大数据分析:微信推文爬取与分析(词频词云分析)

  首先先对《叮咚!院“十佳”优秀经管青年组团出道,快来打call~》这篇微信文章分析,查看网页源代码可以发现,整篇文章的文字部分以层次关系分别在<div id = “js_article”> --> <div class = “rich_media_inner”> --> <div id = “page_content> --> <div class = “rich_media_area_primary> --><div id = “img-content”> --> <div class = “rich_media_content”> 的标签之下,利用BeautifulSoup的find_all方法就可以找到class为rich_media_content的div之下的内容。网页的源代码层级如下

 

 大数据分析:微信推文爬取与分析(词频词云分析)

 

 

  以下为代码片段,把正文部分爬取下来之后存储到txt文件中,方便接下来的词频词云分析。

#叮咚!院“十佳”优秀经管青年组团出道,快来打call~
import requests
import re
from bs4 import BeautifulSoup

url = "https://mp.weixin.qq.com/s?__biz=MzI3MTc1NDExOQ==&mid=2247498465&idx=1&sn=6a8f71343b04d97c79687c7d71ccc0f1&chksm=eb3e4c09dc49c51f217fe4c5a22ba54b78213378640da078217bd375caf1406c420a615d7dfe&mpshare=1&scene=23&srcid=&sharer_sharetime=1591921147875&sharer_shareid=b9489319d498f78fa93ed3b25882d1f9#rd"

headers={
    User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36
}
r = requests.get(url,headers=headers,timeout=5)
soup1 = BeautifulSoup(r.text,"lxml")
text1 = soup.find_all("div" , class_ = "rich_media_content")

print(text1[0].get_text())
jgxytext = text[0].get_text()

txt = open("jgxysj.txt" , "a+" , encoding = "utf-8")
txt.write(jgxytext)
txt.close()

  

代码运行的部分结果如下图所示:

大数据分析:微信推文爬取与分析(词频词云分析)

 

 

  对《喜讯 | 我院三个团支部荣获“福州大学十佳团支部立项”荣誉称号》这篇文章的分析也是类似的过程,正文部分也是在<div class = “rich_media_content”>的标签下,网页源代码如下图所示:

大数据分析:微信推文爬取与分析(词频词云分析)

 

 

 

 

 

  代码片段如下,把爬取到的文字部分追加到jgxysj.txt的文件下。

#喜讯 | 我院三个团支部荣获“福州大学十佳团支部立项”荣誉称号
import requests
import re
from bs4 import BeautifulSoup

url = "https://mp.weixin.qq.com/s?__biz=MzI3MTc1NDExOQ==&mid=2247498465&idx=2&sn=23f92d8bf222d3ad246de846e59cc517&chksm=eb3e4c09dc49c51f7417b81be7248fdc13caa3b12b1dcf9cb7054747e58ca3cd2105bd4a77cd&mpshare=1&scene=23&srcid=&sharer_sharetime=1591921420851&sharer_shareid=b9489319d498f78fa93ed3b25882d1f9#rd"

headers={
    User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36
}

r = requests.get(url,headers=headers,timeout=5)
soup2 = BeautifulSoup(r.text,"lxml")
text2 = soup.find_all("div" , class_ = "rich_media_content")

print(text2[0].get_text())
jgxytext = text[0].get_text()

txt = open("jgxysj.txt" , "a+" , encoding = "utf-8")
txt.write(jgxytext)
txt.close()

大数据分析:微信推文爬取与分析(词频词云分析)

 

 

  接下来进行词频分析,关键是使用jieba库进行分割词组,并统计各个词出现的出现频率。代码中的jgxy_list列表用于保存分割得到的词语,count字典的key为各词语,values为各个词语出现的次数,在统计的过程中过滤掉长度为1的词语。代码如下所示:

#词频分析
import jieba
jgxy = open(jgxysj.txt,"r",encoding = "utf-8").read()
text = jieba.lcut(jgxy)
counts = {}
jgxy_list = []
for word in text:
    if len(word) == 1:   #退出一个字的词
        continue
    else:
        counts[word]=counts.get(word,0)+1
        jgxy_list.append(word.replace(" ",""))
cloud_text=",".join(jgxy_list)
items = list(counts.items())
items.sort(key=lambda x:x[1],reverse=True)
for i in range(200):
    word,count=items[i]
    print("{0:<10}{1:>5}".format(word,count))

代码执行结果如下图所示:

 

 

 

  可以看到,两篇文章中出现最多的几个词语是“福州大学”、“学生”、“学院”等词语,但是有一些词对文本的分析可能会有干扰,在绘制词云图时选择把这些词设置为stopwords。同时,把中国地图作为词云图的背景进行绘制。词云绘制的代码如下:

#绘制云图
from PIL import Image
import numpy as np
from wordcloud import WordCloud,ImageColorGenerator
from matplotlib import pyplot as plt

cloud_mask = np.array(Image.open("ChinaMap.jpg"))

st = set(["福州大学","同学","学院","获奖","感言","学生"])

jgxywd = WordCloud(
    background_color = "white",
    mask = cloud_mask,
    max_words = 200,
    font_path = "STXINGKA.TTF",
    min_font_size = 10,
    max_font_size = 50,
    width = 600,
    height = 600,
    stopwords = st
)
jgxywd.generate(cloud_text)
jgxywd.to_file("jgxywordcloud.PNG")

大数据分析:微信推文爬取与分析(词频词云分析)

 

 

  可以看到,两篇文章合成的文本所绘制的词云中,出现比较多的词语有“个人事迹”、“荣誉”、“共青团*”、“大赛”、“工作”等,我们可以推断,取得院十佳大学生的同学们大都做过一些学生工作,多为共青团*,参加过一些比赛,取得过一定的荣誉。所以,希望自己能多参与学生活动,积极学习,让自己变得更加优秀。

大数据分析:微信推文爬取与分析(词频词云分析)

上一篇:《树莓派开发实战(第2版)》——2.2 查看自己的IP地址


下一篇:Bob,我要怎样才能成为一名 iOS 开发者