题意很好解...
直接exgcd 求最小值,然后对于xa----xb区间......求一波x多少可以满足
然后y同理,然后取一波最小值...
就搞定了...
不知道为什么莫名RE
#include<bits/stdc++.h> using namespace std; int T,cishu; long long a,b,c,xa,ya,xb,yb,x,y,gcd,minlx,minly,maxlx,maxly,dx,dy,ans1,ans2; long long exgcd(long long al,long long bl,long long &xl,long long &yl){ if(bl==0){ xl=1,yl=0; return al; } long long zz = exgcd(bl,al%bl,xl,yl); xl-=(al/bl)*yl; swap(xl,yl); return zz; } int main(){ cin>>T; while(T--){ cishu++;cout<<"Case "<<cishu<<": "; cin>>a>>b>>c>>xa>>xb>>ya>>yb; if(a==0&&b==0){ if(c==0)cout<<(xb-xa+1)*(yb-ya+1)<<endl; else cout<<0<<endl; continue; } gcd = exgcd(a,b,x,y); if(abs(c)%abs(gcd)!=0){cout<<0<<endl;continue;} x=x*c/(gcd),y=y*c/(gcd),dx=abs(b/gcd),dy=abs(a/gcd); minlx = (x%dx+dx)%dx,minly = (y%dy+dy)%dy; ans1=((xb-xa)-minlx)/dx; ans2=((yb-ya)-minly)/dy; if(((xb-xa)-minlx)%dx==0)ans1++; if(((yb-ya)-minly)%dy==0)ans2++; cout<<min(ans1,ans2)<<endl; } }View Code
好像是正负号?