1. 前言
算法为王。
想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手;只有内功深厚者,前端之路才会走得更远。
笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习。
文中包含了 十大经典排序算法
的思想、代码实现、一些例子、复杂度分析、动画、还有算法可视化工具。
这应该是目前比较全的 JavaScript 十大经典排序算法
的讲解了吧。
2. 如何分析一个排序算法
复杂度分析是整个算法学习的精髓。
- 时间复杂度: 一个算法执行所耗费的时间。
- 空间复杂度: 运行完一个程序所需内存的大小。
时间和空间复杂度的详解,请看 JavaScript 数据结构与算法之美 - 时间和空间复杂度。
学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。
分析一个排序算法,要从 执行效率
、内存消耗
、稳定性
三方面入手。
2.1 执行效率
1. 最好情况、最坏情况、平均情况时间复杂度
我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。
除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
2. 时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。
但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
3. 比较次数和交换(或移动)次数
这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。
所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
2.2 内存消耗
也就是看空间复杂度。
还需要知道如下术语:
- 内排序:所有排序操作都在内存中完成;
- 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
- 原地排序:原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。
2.3 稳定性
- 稳定:如果待排序的序列中存在值
相等
的元素,经过排序之后,相等元素之间原有的先后顺序不变
。
比如: a 原本在 b 前面,而 a = b,排序之后,a 仍然在 b 的前面; - 不稳定:如果待排序的序列中存在值
相等
的元素,经过排序之后,相等元素之间原有的先后顺序改变
。
比如:a 原本在 b 的前面,而 a = b,排序之后, a 在 b 的后面;
3. 十大经典排序算法
3.1 冒泡排序(Bubble Sort)
思想
- 冒泡排序只会操作相邻的两个数据。
- 每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。
- 一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。
特点
- 优点:排序算法的基础,简单实用易于理解。
- 缺点:比较次数多,效率较低。
实现
// 冒泡排序(未优化)
const bubbleSort = arr => {
console.time('改进前冒泡排序耗时');
const length = arr.length;
if (length <= 1) return;
// i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
for (let i = 0; i < length - 1; i++) {
// j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
for (let j = 0; j < length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
console.log('改进前 arr :', arr);
console.timeEnd('改进前冒泡排序耗时');
};
优化:当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。
// 冒泡排序(已优化)
const bubbleSort2 = arr => {
console.time('改进后冒泡排序耗时');
const length = arr.length;
if (length <= 1) return;
// i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
for (let i = 0; i < length - 1; i++) {
let hasChange = false; // 提前退出冒泡循环的标志位
// j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
for (let j = 0; j < length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
hasChange = true; // 表示有数据交换
}
}
if (!hasChange) break; // 如果 false 说明所有元素已经到位,没有数据交换,提前退出
}
console.log('改进后 arr :', arr);
console.timeEnd('改进后冒泡排序耗时');
};
测试
// 测试
const arr = [7, 8, 4, 5, 6, 3, 2, 1];
bubbleSort(arr);
// 改进前 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进前冒泡排序耗时: 0.43798828125ms
const arr2 = [7, 8, 4, 5, 6, 3, 2, 1];
bubbleSort2(arr2);
// 改进后 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进后冒泡排序耗时: 0.318115234375ms
分析
- 第一,冒泡排序是原地排序算法吗 ?
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地
排序算法。 - 第二,冒泡排序是稳定的排序算法吗 ?
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。
为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序。
所以冒泡排序是稳定
的排序算法。 - 第三,冒泡排序的时间复杂度是多少 ?
最佳情况:T(n) = O(n),当数据已经是正序时。
最差情况:T(n) = O(n2),当数据是反序时。
平均情况:T(n) = O(n2)。
动画
3.2 插入排序(Insertion Sort)
插入排序又为分为 直接插入排序 和优化后的 拆半插入排序 与 希尔排序,我们通常说的插入排序是指直接插入排序。
一、直接插入
思想
一般人打扑克牌,整理牌的时候,都是按牌的大小(从小到大或者从大到小)整理牌的,那每摸一张新牌,就扫描自己的牌,把新牌插入到相应的位置。
插入排序的工作原理:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
步骤
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤 2 ~ 5。
实现
// 插入排序
const insertionSort = array => {
const len = array.length;
if (len <= 1) return
let preIndex, current;
for (let i = 1; i < len; i++) {
preIndex = i - 1; //待比较元素的下标
current = array[i]; //当前元素
while (preIndex >= 0 && array[preIndex] > current) {
//前置条件之一: 待比较元素比当前元素大
array[preIndex + 1] = array[preIndex]; //将待比较元素后移一位
preIndex--; //游标前移一位
}
if (preIndex + 1 != i) {
//避免同一个元素赋值给自身
array[preIndex + 1] = current; //将当前元素插入预留空位
console.log('array :', array);
}
}
return array;
};
测试
// 测试
const array = [5, 4, 3, 2, 1];
console.log("原始 array :", array);
insertionSort(array);
// 原始 array: [5, 4, 3, 2, 1]
// array: [4, 5, 3, 2, 1]
// array: [3, 4, 5, 2, 1]
// array: [2, 3, 4, 5, 1]
// array: [1, 2, 3, 4, 5]
分析
- 第一,插入排序是原地排序算法吗 ?
插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),所以,这是一个原地
排序算法。 - 第二,插入排序是稳定的排序算法吗 ?
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定
的排序算法。 - 第三,插入排序的时间复杂度是多少 ?
最佳情况:T(n) = O(n),当数据已经是正序时。
最差情况:T(n) = O(n2),当数据是反序时。
平均情况:T(n) = O(n2)。
动画
二、拆半插入
插入排序也有一种优化算法,叫做拆半插入
。
思想
折半插入排序是直接插入排序的升级版,鉴于插入排序第一部分为已排好序的数组,我们不必按顺序依次寻找插入点,只需比较它们的中间值与待插入元素的大小即可。
步骤
- 取 0 ~ i-1 的中间点 ( m = (i-1) >> 1 ),array[i] 与 array[m] 进行比较,若 array[i] < array[m],则说明待插入的元素 array[i] 应该处于数组的 0 ~ m 索引之间;反之,则说明它应该处于数组的 m ~ i-1 索引之间。
- 重复步骤 1,每次缩小一半的查找范围,直至找到插入的位置。
- 将数组中插入位置之后的元素全部后移一位。
- 在指定位置插入第 i 个元素。
注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 == Math.floor(x/2) 。
// 折半插入排序
const binaryInsertionSort = array => {
const len = array.length;
if (len <= 1) return;
let current, i, j, low, high, m;
for (i = 1; i < len; i++) {
low = 0;
high = i - 1;
current = array[i];
while (low <= high) {
//步骤 1 & 2 : 折半查找
m = (low + high) >> 1; // 注: x>>1 是位运算中的右移运算, 表示右移一位, 等同于 x 除以 2 再取整, 即 x>>1 == Math.floor(x/2) .
if (array[i] >= array[m]) {
//值相同时, 切换到高半区,保证稳定性
low = m + 1; //插入点在高半区
} else {
high = m - 1; //插入点在低半区
}
}
for (j = i; j > low; j--) {
//步骤 3: 插入位置之后的元素全部后移一位
array[j] = array[j - 1];
console.log('array2 :', JSON.parse(JSON.stringify(array)));
}
array[low] = current; //步骤 4: 插入该元素
}
console.log('array2 :', JSON.parse(JSON.stringify(array)));
return array;
};
测试
const array2 = [5, 4, 3, 2, 1];
console.log('原始 array2:', array2);
binaryInsertionSort(array2);
// 原始 array2: [5, 4, 3, 2, 1]
// array2 : [5, 5, 3, 2, 1]
// array2 : [4, 5, 5, 2, 1]
// array2 : [4, 4, 5, 2, 1]
// array2 : [3, 4, 5, 5, 1]
// array2 : [3, 4, 4, 5, 1]
// array2 : [3, 3, 4, 5, 1]
// array2 : [2, 3, 4, 5, 5]
// array2 : [2, 3, 4, 4, 5]
// array2 : [2, 3, 3, 4, 5]
// array2 : [2, 2, 3, 4, 5]
// array2 : [1, 2, 3, 4, 5]
注意
:和直接插入排序类似,折半插入排序每次交换的是相邻的且值为不同的元素,它并不会改变值相同的元素之间的顺序,因此它是稳定的。
三、希尔排序
希尔排序是一个平均时间复杂度为 O(n log n) 的算法,会在下一个章节和 归并排序、快速排序、堆排序 一起讲,本文就不展开了。
3.3 选择排序(Selection Sort)
思路
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
步骤
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 重复第二步,直到所有元素均排序完毕。
实现
const selectionSort = array => {
const len = array.length;
let minIndex, temp;
for (let i = 0; i < len - 1; i++) {
minIndex = i;
for (let j = i + 1; j < len; j++) {
if (array[j] < array[minIndex]) {
// 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;
console.log('array: ', array);
}
return array;
};
测试
// 测试
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);
selectionSort(array);
// 原始 array: [5, 4, 3, 2, 1]
// array: [1, 4, 3, 2, 5]
// array: [1, 2, 3, 4, 5]
// array: [1, 2, 3, 4, 5]
// array: [1, 2, 3, 4, 5]
分析
- 第一,选择排序是原地排序算法吗 ?
选择排序空间复杂度为 O(1),是一种原地
排序算法。 - 第二,选择排序是稳定的排序算法吗 ?
选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。所以,选择排序是一种不稳定
的排序算法。 - 第三,选择排序的时间复杂度是多少 ?
无论是正序还是逆序,选择排序都会遍历 n2 / 2 次来排序,所以,最佳、最差和平均的复杂度是一样的。
最佳情况:T(n) = O(n2)。
最差情况:T(n) = O(n2)。
平均情况:T(n) = O(n2)。
动画
3.4 归并排序(Merge Sort)
思想
排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
归并排序采用的是分治思想
。
分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。
注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 === Math.floor(x / 2) 。
实现
const mergeSort = arr => {
//采用自上而下的递归方法
const len = arr.length;
if (len < 2) {
return arr;
}
// length >> 1 和 Math.floor(len / 2) 等价
let middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle); // 拆分为两个子数组
return merge(mergeSort(left), mergeSort(right));
};
const merge = (left, right) => {
const result = [];
while (left.length && right.length) {
// 注意: 判断的条件是小于或等于,如果只是小于,那么排序将不稳定.
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length) result.push(left.shift());
while (right.length) result.push(right.shift());
return result;
};
测试
// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.time('归并排序耗时');
console.log('arr :', mergeSort(arr));
console.timeEnd('归并排序耗时');
// arr : [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
// 归并排序耗时: 0.739990234375ms
分析
第一,归并排序是原地排序算法吗 ?
这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。
实际上,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。
所以,归并排序不是
原地排序算法。第二,归并排序是稳定的排序算法吗 ?
merge 方法里面的 left[0] <= right[0] ,保证了值相同的元素,在合并前后的先后顺序不变。归并排序是稳定
的排序方法。第三,归并排序的时间复杂度是多少 ?
从效率上看,归并排序可算是排序算法中的佼佼者
。假设数组长度为 n,那么拆分数组共需 logn 步,又每步都是一个普通的合并子数组的过程,时间复杂度为 O(n),故其综合时间复杂度为 O(n log n)。
最佳情况:T(n) = O(n log n)。
最差情况:T(n) = O(n log n)。
平均情况:T(n) = O(n log n)。
动画
3.5 快速排序 (Quick Sort)
快速排序的特点就是快,而且效率高!它是处理大数据最快的排序算法之一。
思想
- 先找到一个基准点(一般指数组的中部),然后数组被该基准点分为两部分,依次与该基准点数据比较,如果比它小,放左边;反之,放右边。
- 左右分别用一个空数组去存储比较后的数据。
- 最后递归执行上述操作,直到数组长度 <= 1;
特点:快速,常用。
缺点:需要另外声明两个数组,浪费了内存空间资源。
实现
方法一:
const quickSort1 = arr => {
if (arr.length <= 1) {
return arr;
}
//取基准点
const midIndex = Math.floor(arr.length / 2);
//取基准点的值,splice(index,1) 则返回的是含有被删除的元素的数组。
const valArr = arr.splice(midIndex, 1);
const midIndexVal = valArr[0];
const left = []; //存放比基准点小的数组
const right = []; //存放比基准点大的数组
//遍历数组,进行判断分配
for (let i = 0; i < arr.length; i++) {
if (arr[i] < midIndexVal) {
left.push(arr[i]); //比基准点小的放在左边数组
} else {
right.push(arr[i]); //比基准点大的放在右边数组
}
}
//递归执行以上操作,对左右两个数组进行操作,直到数组长度为 <= 1
return quickSort1(left).concat(midIndexVal, quickSort1(right));
};
const array2 = [5, 4, 3, 2, 1];
console.log('quickSort1 ', quickSort1(array2));
// quickSort1: [1, 2, 3, 4, 5]
方法二:
// 快速排序
const quickSort = (arr, left, right) => {
let len = arr.length,
partitionIndex;
left = typeof left != 'number' ? 0 : left;
right = typeof right != 'number' ? len - 1 : right;
if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex - 1);
quickSort(arr, partitionIndex + 1, right);
}
return arr;
};
const partition = (arr, left, right) => {
//分区操作
let pivot = left, //设定基准值(pivot)
index = pivot + 1;
for (let i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index - 1;
};
const swap = (arr, i, j) => {
let temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
};
测试
// 测试
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);
const newArr = quickSort(array);
console.log('newArr:', newArr);
// 原始 array: [5, 4, 3, 2, 1]
// newArr: [1, 4, 3, 2, 5]
分析
第一,快速排序是原地排序算法吗 ?
因为 partition() 函数进行分区时,不需要很多额外的内存空间,所以快排是原地排序
算法。第二,快速排序是稳定的排序算法吗 ?
和选择排序相似,快速排序每次交换的元素都有可能不是相邻的,因此它有可能打破原来值为相同的元素之间的顺序。因此,快速排序并不稳定
。第三,快速排序的时间复杂度是多少 ?
极端的例子:如果数组中的数据原来已经是有序的了,比如 1,3,5,6,8。如果我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约 n / 2 个元素,这种情况下,快排的时间复杂度就从 O(nlogn) 退化成了 O(n2)。
最佳情况:T(n) = O(n log n)。
最差情况:T(n) = O(n2)。
平均情况:T(n) = O(n log n)。
动画
解答开篇问题
快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ?
可以发现:
- 归并排序的处理过程是
由下而上
的,先处理子问题,然后再合并。 - 而快排正好相反,它的处理过程是
由上而下
的,先分区,然后再处理子问题。 - 归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。
- 归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。
- 快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。
3.6 希尔排序(Shell Sort)
思想
- 先将整个待排序的记录序列分割成为若干子序列。
- 分别进行直接插入排序。
- 待整个序列中的记录基本有序时,再对全体记录进行依次直接插入排序。
过程
- 举个易于理解的例子:[35, 33, 42, 10, 14, 19, 27, 44],我们采取间隔 4。创建一个位于 4 个位置间隔的所有值的虚拟子列表。下面这些值是 { 35, 14 },{ 33, 19 },{ 42, 27 } 和 { 10, 44 }。
- 我们比较每个子列表中的值,并在原始数组中交换它们(如果需要)。完成此步骤后,新数组应如下所示。
- 然后,我们采用 2 的间隔,这个间隙产生两个子列表:{ 14, 27, 35, 42 }, { 19, 10, 33, 44 }。
- 我们比较并交换原始数组中的值(如果需要)。完成此步骤后,数组变成:[14, 10, 27, 19, 35, 33, 42, 44],图如下所示,10 与 19 的位置互换一下。
- 最后,我们使用值间隔 1 对数组的其余部分进行排序,Shell sort 使用插入排序对数组进行排序。
实现
const shellSort = arr => {
let len = arr.length,
temp,
gap = 1;
console.time('希尔排序耗时');
while (gap < len / 3) {
//动态定义间隔序列
gap = gap * 3 + 1;
}
for (gap; gap > 0; gap = Math.floor(gap / 3)) {
for (let i = gap; i < len; i++) {
temp = arr[i];
let j = i - gap;
for (; j >= 0 && arr[j] > temp; j -= gap) {
arr[j + gap] = arr[j];
}
arr[j + gap] = temp;
console.log('arr :', arr);
}
}
console.timeEnd('希尔排序耗时');
return arr;
};
测试
// 测试
const array = [35, 33, 42, 10, 14, 19, 27, 44];
console.log('原始array:', array);
const newArr = shellSort(array);
console.log('newArr:', newArr);
// 原始 array: [35, 33, 42, 10, 14, 19, 27, 44]
// arr : [14, 33, 42, 10, 35, 19, 27, 44]
// arr : [14, 19, 42, 10, 35, 33, 27, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// 希尔排序耗时: 3.592041015625ms
// newArr: [10, 14, 19, 27, 33, 35, 42, 44]
分析
第一,希尔排序是原地排序算法吗 ?
希尔排序过程中,只涉及相邻数据的交换操作,只需要常量级的临时空间,空间复杂度为 O(1) 。所以,希尔排序是原地排序
算法。第二,希尔排序是稳定的排序算法吗 ?
我们知道,单次直接插入排序是稳定的,它不会改变相同元素之间的相对顺序,但在多次不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,可能导致相同元素相对顺序发生变化。
因此,希尔排序不稳定
。第三,希尔排序的时间复杂度是多少 ?
最佳情况:T(n) = O(n log n)。
最差情况:T(n) = O(n log2 n)。
平均情况:T(n) = O(n log2 n)。
动画
3.7 堆排序(Heap Sort)
堆的定义
堆其实是一种特殊的树。只要满足这两点,它就是一个堆。
- 堆是一个完全二叉树。
完全二叉树:除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。 - 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。
也可以说:堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。
对于每个节点的值都大于等于
子树中每个节点值的堆,我们叫作大顶堆
。
对于每个节点的值都小于等于
子树中每个节点值的堆,我们叫作小顶堆
。
其中图 1 和 图 2 是大顶堆,图 3 是小顶堆,图 4 不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。
思想
- 将初始待排序关键字序列 (R1, R2 .... Rn) 构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素 R[1] 与最后一个元素 R[n] 交换,此时得到新的无序区 (R1, R2, ..... Rn-1) 和新的有序区 (Rn) ,且满足 R[1, 2 ... n-1] <= R[n]。
- 由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1, R2 ...... Rn-1) 调整为新堆,然后再次将 R[1] 与无序区最后一个元素交换,得到新的无序区 (R1, R2 .... Rn-2) 和新的有序区 (Rn-1, Rn)。不断重复此过程,直到有序区的元素个数为 n - 1,则整个排序过程完成。
实现
// 堆排序
const heapSort = array => {
console.time('堆排序耗时');
// 初始化大顶堆,从第一个非叶子结点开始
for (let i = Math.floor(array.length / 2 - 1); i >= 0; i--) {
heapify(array, i, array.length);
}
// 排序,每一次 for 循环找出一个当前最大值,数组长度减一
for (let i = Math.floor(array.length - 1); i > 0; i--) {
// 根节点与最后一个节点交换
swap(array, 0, i);
// 从根节点开始调整,并且最后一个结点已经为当前最大值,不需要再参与比较,所以第三个参数为 i,即比较到最后一个结点前一个即可
heapify(array, 0, i);
}
console.timeEnd('堆排序耗时');
return array;
};
// 交换两个节点
const swap = (array, i, j) => {
let temp = array[i];
array[i] = array[j];
array[j] = temp;
};
// 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:
// 假设结点 i 以下的子堆已经是一个大顶堆,heapify 函数实现的
// 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。
// 后面将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点
// 都执行 heapify 操作,所以就满足了结点 i 以下的子堆已经是一大顶堆
const heapify = (array, i, length) => {
let temp = array[i]; // 当前父节点
// j < length 的目的是对结点 i 以下的结点全部做顺序调整
for (let j = 2 * i + 1; j < length; j = 2 * j + 1) {
temp = array[i]; // 将 array[i] 取出,整个过程相当于找到 array[i] 应处于的位置
if (j + 1 < length && array[j] < array[j + 1]) {
j++; // 找到两个孩子中较大的一个,再与父节点比较
}
if (temp < array[j]) {
swap(array, i, j); // 如果父节点小于子节点:交换;否则跳出
i = j; // 交换后,temp 的下标变为 j
} else {
break;
}
}
};
测试
const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = heapSort(array);
console.log('newArr:', newArr);
// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗时: 0.15087890625ms
// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
分析
第一,堆排序是原地排序算法吗 ?
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是
原地排序算法。第二,堆排序是稳定的排序算法吗 ?
因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。
所以,堆排序是不稳定
的排序算法。第三,堆排序的时间复杂度是多少 ?
堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。
最佳情况:T(n) = O(n log n)。
最差情况:T(n) = O(n log n)。
平均情况:T(n) = O(n log n)。
动画
3.8 桶排序(Bucket Sort)
桶排序是计数排序的升级版,也采用了分治思想
。
思想
- 将要排序的数据分到有限数量的几个有序的桶里。
- 每个桶里的数据再单独进行排序(一般用插入排序或者快速排序)。
- 桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
比如:
桶排序利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
为了使桶排序更加高效,我们需要做到这两点:
- 在额外空间充足的情况下,尽量增大桶的数量。
- 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中。
桶排序的核心:就在于怎么把元素平均分配到每个桶里,合理的分配将大大提高排序的效率。
实现
// 桶排序
const bucketSort = (array, bucketSize) => {
if (array.length === 0) {
return array;
}
console.time('桶排序耗时');
let i = 0;
let minValue = array[0];
let maxValue = array[0];
for (i = 1; i < array.length; i++) {
if (array[i] < minValue) {
minValue = array[i]; //输入数据的最小值
} else if (array[i] > maxValue) {
maxValue = array[i]; //输入数据的最大值
}
}
//桶的初始化
const DEFAULT_BUCKET_SIZE = 5; //设置桶的默认数量为 5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
const bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
const buckets = new Array(bucketCount);
for (i = 0; i < buckets.length; i++) {
buckets[i] = [];
}
//利用映射函数将数据分配到各个桶中
for (i = 0; i < array.length; i++) {
buckets[Math.floor((array[i] - minValue) / bucketSize)].push(array[i]);
}
array.length = 0;
for (i = 0; i < buckets.length; i++) {
quickSort(buckets[i]); //对每个桶进行排序,这里使用了快速排序
for (var j = 0; j < buckets[i].length; j++) {
array.push(buckets[i][j]);
}
}
console.timeEnd('桶排序耗时');
return array;
};
// 快速排序
const quickSort = (arr, left, right) => {
let len = arr.length,
partitionIndex;
left = typeof left != 'number' ? 0 : left;
right = typeof right != 'number' ? len - 1 : right;
if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex - 1);
quickSort(arr, partitionIndex + 1, right);
}
return arr;
};
const partition = (arr, left, right) => {
//分区操作
let pivot = left, //设定基准值(pivot)
index = pivot + 1;
for (let i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index - 1;
};
const swap = (arr, i, j) => {
let temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
};
测试
const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = bucketSort(array);
console.log('newArr:', newArr);
// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗时: 0.133056640625ms
// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
分析
第一,桶排序是原地排序算法吗 ?
因为桶排序的空间复杂度,也即内存消耗为 O(n),所以不是
原地排序算法。第二,桶排序是稳定的排序算法吗 ?
取决于每个桶的排序方式,比如:快排就不稳定,归并就稳定。第三,桶排序的时间复杂度是多少 ?
因为桶内部的排序可以有多种方法,是会对桶排序的时间复杂度产生很重大的影响。所以,桶排序的时间复杂度可以是多种情况的。总的来说
最佳情况:当输入的数据可以均匀的分配到每一个桶中。
最差情况:当输入的数据被分配到了同一个桶中。
以下是桶的内部排序
为快速排序
的情况:
如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k =n / m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。
m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k = n / m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。
当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。
最佳情况:T(n) = O(n)。当输入的数据可以均匀的分配到每一个桶中。
最差情况:T(n) = O(nlogn)。当输入的数据被分配到了同一个桶中。
平均情况:T(n) = O(n)。
桶排序最好情况下使用线性时间 O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为 O(n)。
很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。
适用场景
- 桶排序比较适合用在外部排序中。
- 外部排序就是数据存储在外部磁盘且数据量大,但内存有限,无法将整个数据全部加载到内存中。
动画
3.9 计数排序(Counting Sort)
思想
- 找出待排序的数组中最大和最小的元素。
- 统计数组中每个值为 i 的元素出现的次数,存入新数组 countArr 的第 i 项。
- 对所有的计数累加(从 countArr 中的第一个元素开始,每一项和前一项相加)。
- 反向填充目标数组:将每个元素 i 放在新数组的第 countArr[i] 项,每放一个元素就将 countArr[i] 减去 1 。
关键在于理解最后反向填充时的操作。
使用条件
- 只能用在数据范围不大的场景中,若数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序。
- 计数排序只能给非负整数排序,其他类型需要在不改变相对大小情况下,转换为非负整数。
- 比如如果考试成绩精确到小数后一位,就需要将所有分数乘以 10,转换为整数。
实现
方法一:
const countingSort = array => {
let len = array.length,
result = [],
countArr = [],
min = (max = array[0]);
console.time('计数排序耗时');
for (let i = 0; i < len; i++) {
// 获取最小,最大 值
min = min <= array[i] ? min : array[i];
max = max >= array[i] ? max : array[i];
countArr[array[i]] = countArr[array[i]] ? countArr[array[i]] + 1 : 1;
}
console.log('countArr :', countArr);
// 从最小值 -> 最大值,将计数逐项相加
for (let j = min; j < max; j++) {
countArr[j + 1] = (countArr[j + 1] || 0) + (countArr[j] || 0);
}
console.log('countArr 2:', countArr);
// countArr 中,下标为 array 数值,数据为 array 数值出现次数;反向填充数据进入 result 数据
for (let k = len - 1; k >= 0; k--) {
// result[位置] = array 数据
result[countArr[array[k]] - 1] = array[k];
// 减少 countArr 数组中保存的计数
countArr[array[k]]--;
// console.log("array[k]:", array[k], 'countArr[array[k]] :', countArr[array[k]],)
console.log('result:', result);
}
console.timeEnd('计数排序耗时');
return result;
};
测试
const array = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array: ', array);
const newArr = countingSort(array);
console.log('newArr: ', newArr);
// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 计数排序耗时: 5.6708984375ms
// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]
方法二:
const countingSort2 = (arr, maxValue) => {
console.time('计数排序耗时');
maxValue = maxValue || arr.length;
let bucket = new Array(maxValue + 1),
sortedIndex = 0;
(arrLen = arr.length), (bucketLen = maxValue + 1);
for (let i = 0; i < arrLen; i++) {
if (!bucket[arr[i]]) {
bucket[arr[i]] = 0;
}
bucket[arr[i]]++;
}
for (let j = 0; j < bucketLen; j++) {
while (bucket[j] > 0) {
arr[sortedIndex++] = j;
bucket[j]--;
}
}
console.timeEnd('计数排序耗时');
return arr;
};
测试
const array2 = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array2: ', array2);
const newArr2 = countingSort2(array2, 21);
console.log('newArr2: ', newArr2);
// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 计数排序耗时: 0.043212890625ms
// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]
例子
可以认为,计数排序其实是桶排序的一种特殊情况。
当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有 50 万考生,如何通过成绩快速排序得出名次呢?
- 考生的满分是 900 分,最小是 0 分,这个数据的范围很小,所以我们可以分成 901 个桶,对应分数从 0 分到 900 分。
- 根据考生的成绩,我们将这 50 万考生划分到这 901 个桶里。桶内的数据都是分数相同的考生,所以并不需要再进行排序。
- 我们只需要依次扫描每个桶,将桶内的考生依次输出到一个数组中,就实现了 50 万考生的排序。
- 因为只涉及扫描遍历操作,所以时间复杂度是 O(n)。
分析
- 第一,计数排序是原地排序算法吗 ?
因为计数排序的空间复杂度为 O(k),k 桶的个数,所以不是原地排序算法。 - 第二,计数排序是稳定的排序算法吗 ?
计数排序不改变相同元素之间原本相对的顺序,因此它是稳定的排序算法。 - 第三,计数排序的时间复杂度是多少 ?
最佳情况:T(n) = O(n + k)
最差情况:T(n) = O(n + k)
平均情况:T(n) = O(n + k)
k 是待排序列最大值。
动画
3.10 基数排序(Radix Sort)
思想
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
例子
假设我们有 10 万个手机号码,希望将这 10 万个手机号码从小到大排序,你有什么比较快速的排序方法呢 ?
这个问题里有这样的规律:假设要比较两个手机号码 a,b 的大小,如果在前面几位中,a 手机号码已经比 b 手机号码大了,那后面的几位就不用看了。所以是基于位
来比较的。
桶排序、计数排序能派上用场吗 ?手机号码有 11 位,范围太大,显然不适合用这两种排序算法。针对这个排序问题,有没有时间复杂度是 O(n) 的算法呢 ? 有,就是基数排序。
使用条件
- 要求数据可以分割独立的
位
来比较; - 位之间由递进关系,如果 a 数据的高位比 b 数据大,那么剩下的地位就不用比较了;
- 每一位的数据范围不能太大,要可以用线性排序,否则基数排序的时间复杂度无法做到 O(n)。
方案
按照优先从高位或低位来排序有两种实现方案:
- MSD:由高位为基底,先按 k1 排序分组,同一组中记录, 关键码 k1 相等,再对各组按 k2 排序分成子组, 之后,对后面的关键码继续这样的排序分组,直到按最次位关键码 kd 对各子组排序后,再将各组连接起来,便得到一个有序序列。MSD 方式适用于位数多的序列。
- LSD:由低位为基底,先从 kd 开始排序,再对 kd - 1 进行排序,依次重复,直到对 k1 排序后便得到一个有序序列。LSD 方式适用于位数少的序列。
实现
/**
* name: 基数排序
* @param array 待排序数组
* @param max 最大位数
*/
const radixSort = (array, max) => {
console.time('计数排序耗时');
const buckets = [];
let unit = 10,
base = 1;
for (let i = 0; i < max; i++, base *= 10, unit *= 10) {
for (let j = 0; j < array.length; j++) {
let index = ~~((array[j] % unit) / base); //依次过滤出个位,十位等等数字
if (buckets[index] == null) {
buckets[index] = []; //初始化桶
}
buckets[index].push(array[j]); //往不同桶里添加数据
}
let pos = 0,
value;
for (let j = 0, length = buckets.length; j < length; j++) {
if (buckets[j] != null) {
while ((value = buckets[j].shift()) != null) {
array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞
}
}
}
}
console.timeEnd('计数排序耗时');
return array;
};
测试
const array = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log('原始array:', array);
const newArr = radixSort(array, 2);
console.log('newArr:', newArr);
// 原始 array: [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]
// 堆排序耗时: 0.064208984375ms
// newArr: [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
分析
第一,基数排序是原地排序算法吗 ?
因为计数排序的空间复杂度为 O(n + k),所以不是原地排序算法。第二,基数排序是稳定的排序算法吗 ?
基数排序不改变相同元素之间的相对顺序,因此它是稳定的排序算法。第三,基数排序的时间复杂度是多少 ?
最佳情况:T(n) = O(n * k)
最差情况:T(n) = O(n * k)
平均情况:T(n) = O(n * k)
其中,k 是待排序列最大值。
动画
LSD 基数排序动图演示:
4. 复杂度对比
十大经典排序算法的 时间复杂度与空间复杂度 比较。
名称 | 平均 | 最好 | 最坏 | 空间 | 稳定性 | 排序方式 |
---|---|---|---|---|---|---|
冒泡排序 | O(n2) | O(n) | O(n2) | O(1) | Yes | In-place |
插入排序 | O(n2) | O(n) | O(n2) | O(1) | Yes | In-place |
选择排序 | O(n2) | O(n2) | O(n2) | O(1) | No | In-place |
归并排序 | O(n log n) | O(n log n) | O(n log n) | O(n) | Yes | Out-place |
快速排序 | O(n log n) | O(n log n) | O(n2) | O(logn) | No | In-place |
希尔排序 | O(n log n) | O(n log2 n) | O(n log2 n) | O(1) | No | In-place |
堆排序 | O(n log n) | O(n log n) | O(n log n) | O(1) | No | In-place |
桶排序 | O(n + k) | O(n + k) | O(n2) | O(n + k) | Yes | Out-place |
计数排序 | O(n + k) | O(n + k) | O(n + k) | O(k) | Yes | Out-place |
基数排序 | O(n * k) | O(n * k) | O(n * k) | O(n + k) | Yes | Out-place |
名词解释:
- n:数据规模;
- k:桶的个数;
- In-place: 占用常数内存,不占用额外内存;
- Out-place: 占用额外内存。
5. 算法可视化工具
算法可视化工具 algorithm-visualizer
算法可视化工具 algorithm-visualizer 是一个交互式的在线平台,可以从代码中可视化算法,还可以看到代码执行的过程。旨在通过交互式可视化的执行来揭示算法背后的机制。
效果如下图:算法可视化动画网站 https://visualgo.net/en
效果如下图:算法可视化动画网站 www.ee.ryerson.ca
效果如下图:illustrated-algorithms
变量和操作的可视化表示增强了控制流和实际源代码。您可以快速前进和后退执行,以密切观察算法的工作方式。
效果如下图:
6. 系列文章
JavaScript 数据结构与算法之美 系列文章,暂时写了如下的 11 篇文章,后续还有想写的内容,再补充。
所写的内容只是数据结构与算法内容的冰山一角,如果你还想学更多的内容,推荐学习王争老师的 数据结构与算法之美。
从时间和空间复杂度、基础数据结构到排序算法,文章的内容有一定的关联性,所以阅读时推荐按顺序来阅读,效果更佳。
- 1. JavaScript 数据结构与算法之美 - 时间和空间复杂度
- 2. JavaScript 数据结构与算法之美 - 线性表(数组、队列、栈、链表)
- 3. JavaScript 数据结构与算法之美 - 实现一个前端路由,如何实现浏览器的前进与后退 ?
- 4. JavaScript 数据结构与算法之美 - 栈内存与堆内存 、浅拷贝与深拷贝
- 5. JavaScript 数据结构与算法之美 - 递归
- 6. JavaScript 数据结构与算法之美 - 非线性表(树、堆)
- 7. JavaScript 数据结构与算法之美 - 冒泡排序、选择排序、插入排序
- 8. JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序
- 9. JavaScript 数据结构与算法之美 - 计数排序、桶排序、基数排序
- 10. JavaScript 数据结构与算法之美 - 十大经典排序算法汇总
- 11. JavaScript 数据结构与算法之美 - 强烈推荐 GitHub 上值得前端学习的数据结构与算法项目
如果有错误或者不严谨的地方,请务必给予指正,以免误人子弟,十分感谢。
7. 最后
文中所有的代码及测试事例都已经放到我的 GitHub 上了。
笔者为了写好这系列的文章,花费了大量的业余时间,边学边写,边写边修改,前后历时差不多 2 个月,入门级的文章总算是写完了。
如果你觉得有用或者喜欢,就点收藏,顺便点个赞吧,你的支持是我最大的鼓励 !