深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了。由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文:
一、数据准备
官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片。因此有些人并不知道该怎么办。在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始。mnist图片数据我放在了百度云盘。
mnist图片数据下载:http://pan.baidu.com/s/1pLMV4Kz
数据分成了训练集(60000张共10类)和测试集(共10000张10类),每个类别放在一个单独的文件夹里。并且将所有的图片,都生成了txt列表清单(train.txt和test.txt)。大家下载下来后,直接解压到当前用户根目录下就可以了。由于我是在windows下压缩的,因此是winrar文件。如果大家要在linux下解压缩,需要安装rar的linux版本,也是十分简单
sudo apt-get install rar
二、导入caffe库,并设定文件路径
我是将mnist直接放在根目录下的,所以代码如下:
# -*- coding: utf-8 -*- import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/' #根目录
train_list=root+'mnist/train/train.txt' #训练图片列表
test_list=root+'mnist/test/test.txt' #测试图片列表
train_proto=root+'mnist/train.prototxt' #训练配置文件
test_proto=root+'mnist/test.prototxt' #测试配置文件
solver_proto=root+'mnist/solver.prototxt' #参数文件
其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。
此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。
二、生成配置文件
配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。
#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
#第一层,数据输入层,以ImageData格式输入
data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
transform_param=dict(scale= 0.00390625))
#第二层:卷积层
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#卷积层
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#全连接层
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
#激活函数层
relu3=L.ReLU(fc3, in_place=True)
#全连接层
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#softmax层
loss = L.SoftmaxWithLoss(fc4, label) if include_acc: # test阶段需要有accuracy层
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss) def write_net():
#写入train.prototxt
with open(train_proto, 'w') as f:
f.write(str(Lenet(train_list,batch_size=64))) #写入test.prototxt
with open(test_proto, 'w') as f:
f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))
配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。
三、生成参数文件solver
同样,可以在编辑器里面直接书写,也可以用代码生成。
#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
s=proto.caffe_pb2.SolverParameter()
s.train_net =train_net
s.test_net.append(test_net)
s.test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
s.test_iter.append(100) #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
s.max_iter = 9380 #10 epochs , 938*10,最大训练次数
s.base_lr = 0.01 #基础学习率
s.momentum = 0.9 #动量
s.weight_decay = 5e-4 #权值衰减项
s.lr_policy = 'step' #学习率变化规则
s.stepsize=3000 #学习率变化频率
s.gamma = 0.1 #学习率变化指数
s.display = 20 #屏幕显示间隔
s.snapshot = 938 #保存caffemodel的间隔
s.snapshot_prefix =root+'mnist/lenet' #caffemodel前缀
s.type ='SGD' #优化算法
s.solver_mode = proto.caffe_pb2.SolverParameter.GPU #加速
#写入solver.prototxt
with open(solver_file, 'w') as f:
f.write(str(s))
四、开始训练模型
训练过程中,也在不停的测试。
#开始训练
def training(solver_proto):
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver(solver_proto)
solver.solve()
最后,调用以上的函数就可以了。
if __name__ == '__main__':
write_net()
gen_solver(solver_proto,train_proto,test_proto)
training(solver_proto)
五、完成的python文件
mnist.py
# -*- coding: utf-8 -*- import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/' #根目录
train_list=root+'mnist/train/train.txt' #训练图片列表
test_list=root+'mnist/test/test.txt' #测试图片列表
train_proto=root+'mnist/train.prototxt' #训练配置文件
test_proto=root+'mnist/test.prototxt' #测试配置文件
solver_proto=root+'mnist/solver.prototxt' #参数文件 #编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
#第一层,数据输入层,以ImageData格式输入
data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
transform_param=dict(scale= 0.00390625))
#第二层:卷积层
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#卷积层
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#全连接层
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
#激活函数层
relu3=L.ReLU(fc3, in_place=True)
#全连接层
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#softmax层
loss = L.SoftmaxWithLoss(fc4, label) if include_acc: # test阶段需要有accuracy层
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss) def write_net():
#写入train.prototxt
with open(train_proto, 'w') as f:
f.write(str(Lenet(train_list,batch_size=64))) #写入test.prototxt
with open(test_proto, 'w') as f:
f.write(str(Lenet(test_list,batch_size=100, include_acc=True))) #编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
s=proto.caffe_pb2.SolverParameter()
s.train_net =train_net
s.test_net.append(test_net)
s.test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
s.test_iter.append(500) #50000/100 测试迭代次数,需要迭代500次,才完成一次所有数据的测试
s.max_iter = 9380 #10 epochs , 938*10,最大训练次数
s.base_lr = 0.01 #基础学习率
s.momentum = 0.9 #动量
s.weight_decay = 5e-4 #权值衰减项
s.lr_policy = 'step' #学习率变化规则
s.stepsize=3000 #学习率变化频率
s.gamma = 0.1 #学习率变化指数
s.display = 20 #屏幕显示间隔
s.snapshot = 938 #保存caffemodel的间隔
s.snapshot_prefix = root+'mnist/lenet' #caffemodel前缀
s.type ='SGD' #优化算法
s.solver_mode = proto.caffe_pb2.SolverParameter.GPU #加速
#写入solver.prototxt
with open(solver_file, 'w') as f:
f.write(str(s)) #开始训练
def training(solver_proto):
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver(solver_proto)
solver.solve()
#
if __name__ == '__main__':
write_net()
gen_solver(solver_proto,train_proto,test_proto)
training(solver_proto)
我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行
sudo python mnist/mnist.py
在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。
我设置为训练10 epoch,9000多次,测试精度可以达到99%