原文链接:https://blog.csdn.net/qq_27009517/article/details/103805099
一、加速查找
1.用set而非list
import time data = [i**2+1 for i in range(1000000)] list_data = list(data) set_data = set(data) # normal tic = time.time() s = 1098987 in list_data toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic)) # speed up tic = time.time() ss = 1098987 in set_data toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic))
2.用dict而非两个list进行匹配查找
import time list_a = [i*2-1 for i in range(1000000)] list_b = [i**2 for i in list_a] dict_ab = dict(zip(list_a, list_b)) # normal tic = time.time() a = list_b[list_a.index(876567)] toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic)) # speed up tic = time.time() aa = dict_ab.get(876567, None) toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic))
二、加速循环,在循环体中避免重复计算,用循环机制代替递归函数
3.用for而非while
import time tic = time.time() s, i = 0, 0 while i<100000: i += 1 s += i toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic)) tic = time.time() s, i = 0, 0 for i in range(1, 100001): i += 1 s += i toc = time.time() print(‘userd: {:.5f}s‘.format(toc-tic))
三、利用库函数进行加速
4.用numba加速Python函数
import time tic = time.time() def my_power(x): return (x**2) def my_power_sum(n): s = 0 for i in range(1, n+1): s = s + my_power(i) return s s = my_power_sum(1000000) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up from numba import jit tic = time.time() @jit def my_power(x): return (x**2) @jit def my_power_sum(n): s = 0 for i in range(1, n+1): s = s + my_power(i) return s ss = my_power_sum(1000000) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))
代码是使用numpy做数字运算,并且常常有很多的循环,那么使用Numba就是一个很好的选择。numba不适合字典型变量和一些非numpy的函数,尤其是上面numba不能解析pandas,上面的函数内容在运行时也就无法编译。
5. 用map加速Python函数
import time tic = time.time() res = [x**2 for x in range(1, 1000000, 3)] toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up tic = time.time() res = map(lambda x:x**2, range(1, 1000000, 3)) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))
6.用filter加速Python函数
import time tic = time.time() res = [x**2 for x in range(1, 1000000, 3) if x%7==0] toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up tic = time.time() res = filter(lambda x:x%7==0, range(1, 1000000, 3)) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))
7. 用np.where加速if函数
import time import numpy as np array_a = np.arange(-100000, 100000) tic = time.time() relu = np.vectorize(lambda x: x if x>0 else 0) arr = relu(array_a) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up tic = time.time() relu = lambda x:np.where(x>0, x, 0) arrr = relu(array_a) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))
8.多线程thread加速
import time import numpy as np tic = time.time() def writefile(i): with open(str(i)+‘.txt‘, ‘w‘) as f: s = (‘hello %d\n‘%i) * 10000000 f.write(s) for i in range(40,50, 1): writefile(i) toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up import threading tic = time.time() def writefile(i): with open(str(i)+‘.txt‘, ‘w‘) as f: s = (‘hello %d\n‘%i) * 10000000 f.write(s) thread_list = [] for i in range(10, 20, 1): t = threading.Thread(target=writefile, args=(i, )) t.setDaemon(True) thread_list.append(t) for t in thread_list: t.start() for t in thread_list: t.join() toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))
9.多线程multiprocessing加速
import time import numpy as np tic = time.time() def muchjob(x): time.sleep(5) return(x**2) ans = [muchjob(i) for i in range(8)] toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic)) # speed up import multiprocessing tic = time.time() def muchjob(x): time.sleep(5) return x**2 pool = multiprocessing.Pool(processes=4) res = [] for i in range(8): res.append(pool.apply_async(muchjob, (i, ))) pool.close() pool.join() toc = time.time() print(‘used: {:.5f}s‘.format(toc-tic))