2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 4436 Solved: 1957
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
1<=N<=10^7
uva上做过gcd(x,y)=1的题
gcd(x,y)=p ---> gcd(x/p,y/p)=1
每个质数做一遍行了
答案是欧拉函数的前缀和*2-质数的个数,因为(p,p)算一组
朴素的两个筛法写下来要5000ms
然后就学了一个新技能:欧拉筛法同时求欧拉函数
我们要证明:
若p是x的约数,则Φ(x*p)=Φ(x)*p.
若p不是x的约数,则Φ(x*p)=Φ(x)*(p-1).
欧拉函数是一个积性函数,且phi(p)=p-1 p is prime
若f(n)为数论函数,且f(1)=1,对于互质的正整数p,q有f(p⋅q)=f(p)⋅f(q),则称其为积性函数。
那么Φ(x*p)=Φ(x)*(p-1)
Φ(p^k)=p^k-p^(k-1)=(p-1)*p^(k-1)
证明:
令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中不与p互质的数共[p^(k-1)-1]个(除以p然后下取整.....)
所以Φ(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1) 得证。//定义
Φ(p^k)=(p-1)*p^(k-1)=(p-1)*p^(k-2)*p
Φ(p^(k-1))=(p-1)*p^(k-2)
所以当k>1时,Φ(p^k)=Φ(p^(k-1))*p
得证
复习欧拉筛法:对于任意一个合数,拆成最小质数*某个数字的形式,每个数字只会被筛选一次
2016的国家队论文里有一个语言描述比较好,复制不下来....
那么我们遇到一个数i,如果是素数phi[i]=i-1
然后在枚举i*p[j]时,phi[i]已经知道了,由以上两个式子就可以算出phi[i*p[j]]的值了
更一般的来说,就是因为线性筛的过程中得到了每个数的最小质因子,利用了积性函数的性质
【2016-12-22】上述直接观察也可以
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieveprime(){
for(int i=;i<=n;i++){
if(!vis[i]) p[++m]=i;
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
void sievephi(){
phi[]=;
for(int i=;i<=n;i++)if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieveprime();
sievephi();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}
朴素
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieve(){
phi[]=;
for(int i=;i<=n;i++){
if(!vis[i]){
p[++m]=i;
phi[i]=i-;
}
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==){
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieve();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}