互斥体与互锁 <第五篇>

互斥体实现了“互相排斥”(mutual exclusion)同步的简单形式(所以名为互斥体(mutex))。互斥体禁止多个线程同时进入受保护的代码“临界区”。因此,在任意时刻,只有一个线程被允许进入这样的代码保护区。

  任何线程在进入临界区之前,必须获取(acquire)与此区域相关联的互斥体的所有权。如果已有另一线程拥有了临界区的互斥体,其他线程就不能再进入其中。这些线程必须等待,直到当前的属主线程释放(release)该互斥体。什么时候需要使用互斥体呢?互斥体用于保护共享的易变代码,也就是,全局或静态数据。这样的数据必须通过互斥体进行保护,以防止它们在多个线程同时访问时损坏。

1、Mutex

  Mutex是一个同步基元,它与前面提到的锁最大的区别在于它支持进程间同步。

  Mutex允许同一个线程多次重复访问共享区,但是对于别的线程那就必须等待,它甚至支持不同进程中的线程同步,这点更能体现他的优势,但是劣势也是显而易见的,那就是巨大的性能损耗和容易产生死锁的困扰,所以除非需要在特殊场合,否则 我们尽量少用为妙,这里并非是将Mutex的缺点说的很严重,而是建议大家在适当的场合使用更为适合的同步方式,Mutex 就好比一个重量型的工具,利用它则必须付出性能的代价。

  1、Mutex线程同步

  Mutex实现线程同步主要依靠以下两个方法实现:

  • WaitOne 阻止当前线程,直到当前 WaitHandle 收到信号。
  • ReleaseMutex 释放 Mutex 一次。
互斥体与互锁 <第五篇>
    class Program
{
static void Main(string[] args)
{
for (int i = 0; i < 10; i++)
{
ThreadPool.QueueUserWorkItem(Run);
} Console.Read();
} static int count = 0; static Mutex mutex = new Mutex(); static void Run(object obj)
{
//阻止当前线程
mutex.WaitOne(); Console.WriteLine("当前数字:{0}", ++count); //释放 Mutex
mutex.ReleaseMutex();
}
}
互斥体与互锁 <第五篇>

  输出:

  互斥体与互锁 <第五篇>

  Mutex和Monitor的区别:

  1. Monitor不是waitHandle的子类,它具有等待和就绪队列的实际应用;
  2. Monitor无法跨进程中实现线程同步,但是Mutex可以;
  3. 相对而言两者有明显的性能差距,mutex相对性能较弱但是功能更为强大,monitor则性能比较好;
  4. 两者都是用锁的概念来实现同步不同的是monitor一般在方法(函数)调用方加锁;mutex一般在方法(函数)内部加锁,即锁定被调用端;

  2、进程间同步

  当给Mutex取名的时候能够实现进程同步,不取名实现线程同步。

  Mutex有两种类型:未命名的局部mutex和已命名的系统mutex。

  • 本地mutex仅存在与进程当中,进程内可见;
  • 已命名的系统mutex在整个操作系统中可见,可用于同步进程活动;
互斥体与互锁 <第五篇>
    class Program
{
static void Main(string[] args)
{
//使用线程输出等待状态
Thread t1 = new Thread(ShowMyWord);
t1.Start(); Run(t1); Console.Read();
} static int count = 0; static Mutex mutex = new Mutex(false, "xxoo"); static void Run(Thread t1)
{ //这个WaitOne方法要么返回true,要么一直不返回(不会返回false),所以没办法用if来判断
//于是,用个线程输出等待状态
mutex.WaitOne(); Console.WriteLine("终于轮到老子了! " + DateTime.Now.TimeOfDay.ToString());
//停止线程t1,不要再输出等待状态
t1.Abort();
//模拟干活十秒
Thread.Sleep(10000);
Console.WriteLine("干完! " + DateTime.Now.TimeOfDay.ToString()); //释放 Mutex
mutex.ReleaseMutex();
} static void ShowMyWord(object obj)
{
for (int i = 0; i < 10; i++)
{
Thread.Sleep(2000);
Console.WriteLine("我的心在等待,一直在等待! " + DateTime.Now.TimeOfDay.ToString());
}
}
}
互斥体与互锁 <第五篇>

  以上代码,将生成的.exe文件复制两份:

  互斥体与互锁 <第五篇>

  快速运行两个输出如下:

  互斥体与互锁 <第五篇>

二、Interlocked

  实际引用中,可能我们对共享变量的使用并不十分复杂,可能只是一些简单的操作如:自增、自减、求和、赋值、比较等。

  MSDN中的解析Interlocked为多个线程共享的变量提供原子操作。

  常用操作如下:

方法 说明
Add 相加
CompareExchange 比较
Increment 递增
Decrement 递减
Exchange 赋值

  示例:

互斥体与互锁 <第五篇>
   class Program
{
static void Main(string[] args)
{
for (int i = 0; i < 20; i++)
{
Thread t = new Thread(Run); t.Start();
} Console.Read();
} static int Incre = 0;
static int Add = 0;
static int Exchange = 0;
static int Decre = 21;
static int CompareExchange = 0; static Mutex mutex = new Mutex(); static void Run()
{
//自增操作
//Console.WriteLine("当前数字:{0}", Interlocked.Increment(ref Incre));
//递减操作
//Console.WriteLine("当前数字:{0}", Interlocked.Decrement(ref Decre));
//相加
//Console.WriteLine("当前数字:{0}", Interlocked.Add(ref Add,10));
//赋值
//Console.WriteLine("当前数字:{0}", Interlocked.Exchange(ref Exchange, 5));
//比较,如果第三个参数等于CompareExchange,则将第二个参数的值,赋给第一个参数
Console.WriteLine("当前数字:{0}", Interlocked.CompareExchange(ref CompareExchange, 15,0)); }
}
互斥体与互锁 <第五篇>
上一篇:基于visual Studio2013解决面试题之1305字符串所有子集


下一篇:一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!