求树的直径+并查集(bfs,dfs都可以)hdu4514

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514

这题主要是叫我们求出树的直径,在求树的直径之前要先判断一下有没有环

树的直径指的就是一棵树上面距离最远的两点的距离,有时也可以指最远的两点之间的路径。

至于树的直径怎么求,我们首先要知道一个结论,树上面随便取一点,离这一点最远的那个点一定是树的直径上面的两点中的一点

证明的博客:https://www.cnblogs.com/*qi/archive/2012/04/08/2437424.html

知道了这个结论,我们就可以用两次dfs或者两次bfs来求出树的直径,第一次bfs我们随便拿树上的一个点进行bfs,去找到离他最远的一点,这样我们就找到了树的直径两端上面的一点,然后第二次bfs就以这一点为开始去找到离这一点距离最大的点,得到的这这个点就树的直径两端的另外一个点,这两点之间的距离就是树的直径。

思路:首先我们要判断是否有环,这里用的是并查集,一旦给出的树边上的两点已经在一个集合里面了,说明之前这两点之间就有一条互通的路径,所以加上增加的这条树边就构成了一个环。然后注意这题给出的数据不一定只是一颗树,可能是森林,所以可能有多个树的直径,我们取最大值。

我的代码写的不是很好,绝对不是最优的,仅供参考。

bfs写的代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<set>
#include<cstdio>
#include<string>
#include<deque>
using namespace std;
typedef long long LL;
#define eps 1e-8
#define INF 0x3f3f3f3f
#define maxn 1000005
int head[maxn],pre[maxn],dis[maxn],vis[maxn];
int n,m,k,t,cnt,flag,max1,point;
//max1记录每次bfs的最大距离,point记录离树根最远的点
struct node{
int v,w,next;
}edge[maxn*];
void init(){
memset(head,-,sizeof(head));
for(int i=;i<=n;i++)
pre[i]=i;
cnt=flag=;
}
int find(int a){
if(pre[a]==a)
return a;
return pre[a]=find(pre[a]);
}
void add(int u,int v,int w){
edge[++cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt;
}
void bfs(int u){//bfs找以点u为子树的所有点里面离点u最远的点和这个最远的距离
queue<int>q;
dis[u]=;
q.push(u);
while(!q.empty()){
u=q.front();
q.pop();
vis[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(!vis[v]){
dis[v]=dis[u]+w;
q.push(v);
if(max1<dis[v]){//更新最远的点和最大距离
max1=dis[v];
point=v;
}
}
}
} }
int main()
{
while(scanf("%d%d",&n,&m)!=EOF){
init();
int u,v,w;
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
if(flag)
continue;
int x=find(u);
int y=find(v);
if(x==y)//并查集判断是否有环
flag=;
else{
pre[x]=y;
add(u,v,w);
add(v,u,w);
}
}
if(flag){
printf("YES\n");
continue;
}
memset(vis,,sizeof(vis));
memset(dis,,sizeof(dis));
stack<int>ss;//因为可能给的数据是森林,不一定是只有一棵树,所以我把每颗树里面
//离树根最远的点存进栈里面
for(int i=;i<=n;i++){
if(vis[i])
continue;
max1=;
bfs(i);
ss.push(point);
}
int ans=;
memset(vis,,sizeof(vis));
memset(dis,,sizeof(vis));
while(!ss.empty()){//再用栈里面的点来进行第二次bfs找到树的直径的另外一个点和树的直径
point=ss.top();
ss.pop();
max1=;
bfs(point);
ans=max(max1,ans);
}
printf("%d\n",ans);
}
return ;
}

dfs写的代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<set>
#include<cstdio>
#include<string>
#include<deque>
using namespace std;
typedef long long LL;
#define eps 1e-8
#define INF 0x3f3f3f3f
#define maxn 100005
int n,m,k,t,ans,flag,max1,cnt,point;
int dis[maxn],vis[maxn],head[maxn],pre[maxn];
struct node{
int v,next,w;
}edge[maxn*];
void init(){
memset(head,-,sizeof(head));
for(int i=;i<=n;i++)
pre[i]=i;
cnt=flag=;
max1=;
}
int find(int a){
if(pre[a]==a)
return a;
return pre[a]=find(pre[a]);
}
void add(int u,int v,int w){
edge[++cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt;
}
void dfs(int u){//求以u为根节点的子树中离点u最远的点已经最大距离
vis[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
int w=edge[i].w;
if(!vis[v]){
dis[v]=max(dis[v],dis[u]+w);
if(dis[v]>max1){
point=v;
max1=dis[v];
}
dfs(v);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF){
init();
int u,v,w;
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
if(flag)
continue;
int x=find(u);
int y=find(v);
if(x==y)
flag=;
else
{
pre[x]=y;
add(u,v,w);
add(v,u,w);
} }
if(flag){
printf("YES\n");
continue;
}
int ans=;
memset(vis,,sizeof(vis));
queue<int>q;//用队列来存第一次dfs找出的所有点
for(int i=;i<=n;i++){
if(vis[i])
continue;
dfs(i);
q.push(point);
max1=;
}
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
while(!q.empty()){
point=q.front();
q.pop();
max1=;
dfs(point);
ans=max(ans,max1);
}
printf("%d\n",ans);
}
return ;
}
上一篇:Java多线程编程核心技术,第二章,对象和变量并发访问


下一篇:【腾讯Bugly干货分享】React Native项目实战总结