选择值或指针作为接收者
使用指针接收者的原因有二:
首先,方法能够修改其接收者指向的值。
其次,这样可以避免在每次调用方法时复制该值。若值的类型为大型结构体时,这样做会更加高效。
在本例中,Scale
和 Abs
接收者的类型为 *Vertex
,即便 Abs
并不需要修改其接收者。
通常来说,所有给定类型的方法都应该有值或指针接收者,但并不应该二者混用。(我们会在接下来几页中明白为什么。)
methods-with-pointer-receivers.go
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := &Vertex{3, 4}
fmt.Printf("Before scaling: %+v, Abs: %v\n", v, v.Abs())
v.Scale(5)
fmt.Printf("After scaling: %+v, Abs: %v\n", v, v.Abs())
}
结果:
Before scaling: &{X:3 Y:4}, Abs: 5
After scaling: &{X:15 Y:20}, Abs: 25
接口
接口类型 是由一组方法签名定义的集合。
接口类型的变量可以保存任何实现了这些方法的值。
注意: 示例代码的 22 行存在一个错误。由于 Abs
方法只为 *Vertex
(指针类型)定义,因此 Vertex
(值类型)并未实现 Abser
。
interfaces.go
package main
import (
"fmt"
"math"
)
type Abser interface {
Abs() float64
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
a = v
fmt.Println(a.Abs())
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
结果:
5
接口与隐式实现
类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。
隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。
interfaces-are-satisfied-implicitly.go
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
fmt.Println(t.S)
}
func main() {
var i I = T{"hello"}
i.M()
}
结果:
Hello