HBase表的热点以及rowkey的设计

HBase表热点

1 什么是热点

  • 检索habse的记录首先要通过row key来定位数据行。
  • 当大量的client访问hbase集群的一个或少数几个节点,造成少数region server的读/写请求过多、负载过大,而其他region server负载却很小,就造成了“热点”现象。

2 热点的解决方案

2.1 预分区

  • 预分区的目的让表的数据可以均衡的分散在集群中,而不是默认只有一个region分布在集群的一个节点上。

2.2 加盐

  • 这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同

2.3 哈希

  • 哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据。
rowkey=MD5(username).subString(0,10)+时间戳	

2.4 反转

  • 反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。
  • 这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
电信公司:
移动-----------> 136xxxx9301  ----->1039xxxx631
				   136xxxx1234  
				   136xxxx2341 
电信
联通

user表
rowkey    name    age   sex    address
          lisi1   21     m      beijing
          lisi2   22     m      beijing
	  lisi3   25     m      beijing
	  lisi4   30     m      beijing
	  lisi5   40     f      shanghai
	  lisi6   50     f      tianjin
	          
需求:后期想经常按照居住地和年龄进行查询?	
rowkey= address+age+随机数
        beijing21+随机数
        beijing22+随机数
        beijing25+随机数
        beijing30+随机数
   
rowkey= address+age+随机数

Rowkey 设计

1 rowkey长度原则

  • rowkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。
  • 建议尽可能短;但是也不能太短,否则rowkey前缀重复的概率增大
  • 设计过长会降低memstore内存的利用率和HFile存储数据的效率。

2 rowkey散列原则

  • 建议将rowkey的高位作为散列字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。
  • 如果没有散列字段,首字段直接是时间信息。所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

3 rowkey唯一原则

  • 必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的
  • 因此,设计rowkey的时候,要充分利用这个排序的特点,可以将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块
上一篇:解决prometheus k8s.gcr.io/addon-resizer:1.8.4镜像无法下载的问题


下一篇:经济学入门必读书籍