【PAT乙级】1094 谷歌的招聘

问题描述
2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921… 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。

输入格式
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。

输出格式
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。

样例输入1
20 5
23654987725541023819

样例输出1
49877

样例输入2
10 3
2468024680

样例输出2
404

C++代码

#include <bits/stdc++.h>
using namespace std;
bool isprime(long long n) {
    if(n == 0 || n == 1) return false;
    for(int i = 2; i <= sqrt(n); i++)
        if(n % i == 0) return false;
    return true;
}
int main() {
    int l, k;
    scanf("%d%d", &l, &k);
    string num;
    cin >> num;
    for(int i = 0; i <= l-k; i++) {
        long long subnum = 0;
        for(int j = i; j < i+k; j++)
            subnum = subnum*10 + (num[j]-'0');
        if(isprime(subnum)) {
            string strnum = to_string(subnum);
            if(strnum.length() < k)
                strnum.insert(0,k-strnum.length(),'0');
            cout << strnum;
            return 0;
        }
    }
    printf("404");
    return 0;
}
上一篇:leetcode[1447]最简分数 python3实现 (判断互质,gcd求最大公约数)


下一篇:题解 【AT4539 Walk】