1.基本了解:
SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。
在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。
2.解释:
这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。
如:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000
比如下面那个 64 bit 的 long 型数字:
第一个部分,是 1 个 bit:0,这个是无意义的。
第二个部分是 41 个 bit:表示的是时间戳。
第三个部分是 5 个 bit:表示的是机房 id,10001。
第四个部分是 5 个 bit:表示的是机器 id,1 1001。
第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。
问题:1 bit:是不用的,为啥呢?
因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
41 bit:表示的是时间戳,单位是毫秒。
41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。
10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。
10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。
12 bit:这个是用来记录同一个毫秒内产生的不同 id。
12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。
这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。
接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。
接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。
最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。
最终一个 64 个 bit 的 id 就出来了,类似于:
0 0001100 10100011 10111110 10001001 00 10001 1 1001 0000 00000000
***********
这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。
下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。
总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id
SnowFlake JAVA算法的实现代码如下:
public class IdWorker{
//下面两个每个5位,加起来就是10位的工作机器id
private long workerId; //工作id
private long datacenterId; //数据id
//12位的序列号
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
//初始时间戳
private long twepoch = 1288834974657L;
//长度为5位
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
//最大值
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
//序列号id长度
private long sequenceBits = 12L;
//序列号最大值
private long sequenceMask = -1L ^ (-1L << sequenceBits);
//工作id需要左移的位数,12位
private long workerIdShift = sequenceBits;
//数据id需要左移位数 12+5=17位
private long datacenterIdShift = sequenceBits + workerIdBits;
//时间戳需要左移位数 12+5+5=22位
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
//上次时间戳,初始值为负数
private long lastTimestamp = -1L;
public long getWorkerId(){
return workerId;
}
public long getDatacenterId(){
return datacenterId;
}
public long getTimestamp(){
return System.currentTimeMillis();
}
//下一个ID生成算法
public synchronized long nextId() {
long timestamp = timeGen();
//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
//获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
//将上次时间戳值刷新
lastTimestamp = timestamp;
/**
* 返回结果:
* (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
* (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
* (workerId << workerIdShift) 表示将工作id左移相应位数
* | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
* 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
*/
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
//获取时间戳,并与上次时间戳比较
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
//获取系统时间戳
private long timeGen(){
return System.currentTimeMillis();
}
//---------------Test---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}
SnowFlake算法的优点:
(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。
(2)容量大:每秒中能生成数百万的自增ID。
(3)ID自增:存入数据库中,索引效率高。
SnowFlake算法的缺点:
依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。
实际中我们的机房并没有那么多,我们可以改进改算法,将10bit的机器id优化,成业务表或者和我们系统相关的业务。