LeetCode 面试常用小技巧,通过二进制获得所有子集

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


这题的官方难度是Medium,点赞3489,反对79,通过率59.9%。从这个数据我们也可以看得出来,这是一道难度不是很大,但是质量很高的题。的确,在这道题的解法当中,你会学到一种新的技巧。

废话不多说,我们先来看题意。

题意

这题的题意非常简单,和上一题有的一拼,基本上从标题就能猜到题目的意思。给定一个没有重复元素的int型数组,要求返回所有的子集,要求子集当中没有重复项,每一项当中也没有重复的元素。

样例

Input: nums = [1,2,3]
Output:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

照搬上题

刚拿到手可能有点蒙,但是稍微想一下就会发现,这一题和上题非常接近,两者唯一的不同就是,子集没有数量的限制,从空集开始,一直到它本身结束,不论多少个元素都可以。而上一题要求的是有数量限制的,也就是说上一题我们求的其实是限定了k个元素的子集。

想明白这点就简单了,显然我们可以复用上一题的算法,我们来遍历这个k,从0到n,就可以获得所有的子集了。只要你上一题做出来了,那么这题几乎没有任何难度。

我们直接来看代码:

class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        # 上一题求解k个组合的解法
        def combine(n, k, ret):
            window = list(range(1, k+1)) + [n+1]
            j = 0
            
            while j < k:
                cur = []
                for i in range(k):
                    cur.append(nums[window[i] - 1])
                ret.append(cur[:])
                
                j = 0
                while j < k and window[j+1] == window[j] + 1:
                    window[j] = j + 1
                    j += 1
                window[j] += 1
                
        # 手动添加空集
        ret = [[]]
        n = len(nums)
        # 遍历k从1到n
        for i in range(1, n+1):
            combine(n, i, ret)
        return ret

二进制组合

照搬上一题的解法固然是可行的,但是这么做完全没有必要,也得不到任何收获。所以我们应该想一下新的解法。

既然这道题让我们求的是所有的子集,那么我们可以从子集的特点入手。我们之前学过,一个含有n个元素的子集的数量是LeetCode 面试常用小技巧,通过二进制获得所有子集。这个很容易想明白,因为n个元素,每个元素都有两个状态,选或者不选。并且这n个元素互相独立,也就是说某个元素选或者不选并不会影响其他的元素,所以我们可以知道一共会有LeetCode 面试常用小技巧,通过二进制获得所有子集种可能。

我们也可以从组合数入手,我们令所有子集的数量为S,那么根据上面我们用组合求解的解法,可以得到:

LeetCode 面试常用小技巧,通过二进制获得所有子集

两者的结果是一样的,说明这个结论一定是正确的。

不知道大家看到n个元素,每个元素有两个取值有什么想法,如果做过的题目数量够多的话,应该能很快联想到二进制。因为在二进制当中,每一个二进制位就只有0和1两种取值。那么我们就可以用n位的二进制数来表示n个元素集合取舍的状态。n位二进制数的取值范围是LeetCode 面试常用小技巧,通过二进制获得所有子集,所以我们用一重循环去遍历它,就相当于一重循环遍历了整个集合所有的状态。

这种技巧我们也曾经在动态规划状态压缩的文章当中提到过,并且在很多题目当中都会用到。所以建议大家可以了解一下,说不定什么时候面试就用上了。

根据这个技巧, 我们来实现代码就非常简单了。

class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        ret = []
        n = len(nums)
        # 遍历所有的状态
        # 1左移n位相当于2的n次方
        for s in range(1 << n):
            cur = []
            # 通过位运算找到每一位是0还是1
            for i in range(n):
                # 判断s状态在2的i次方上,也就是第i位上是0还是1
                if s & (1 << i):
                    cur.append(nums[i])
            ret.append(cur[:])
            
        return ret

从代码来看明显比上面的解法短得多,实际上运行的速度也更快,因为我们去掉了所有多余的操作,我们遍历的每一个状态都是正确的,也不用考虑重复元素的问题。

总结

不知道大家看完文章都有一些什么感悟,可能第一种感悟就是LeetCode应该按照顺序刷吧XD。

的确如此,LeetCode出题人出题都是有套路的,往往出了一道题之后,为了提升题目数量(凑提数),都会在之前题目的基础上做变形,变成一道新题。所以如果你按照顺序刷题的话,会很明显地发现这一点。如果你从这个角度出发去思考的话,不但能理解题目之间的联系,还能揣摩出出题人的用意,这也是一件很有趣的事情。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-06-17
本文作者:承志
本文来自:“掘金”,了解相关信息可以关注“掘金”

上一篇:Java 8 新特性


下一篇:Goji —— 基于 Go 语言的微型 web 框架