Solution -「WC 2022」秃子酋长

\(\mathscr{Description}\)

  Link. (It's empty temporarily.)

  给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r]\),求升序枚举 \(a_{l..r}\) 时下标的移动距离。

  \(n,q\le5\times10^5\)。

\(\mathscr{Solution}\)

  我写了个不加莫队,它慢死了。

  我写了个 Ynoi 风格的纯纯分块预处理,它慢死了。

  我写了个 polylog 的正解,它还是慢死了。


  喵树分治,每次处理跨过区间中点的询问。左右区间互相的影响形式形如:“若右区间包含一个 \([x,y]\) 内的数,则答案变化量为 \(\Delta\)。”注意左右区间包含了哪些数仅跟一个端点有关,所以类似于区间数点的形式,可以考虑离线维护。

  以计算左区间产生的 \(\Delta\) 为例。枚举左区间端点 \(p=\textit{mid}..l\),用 std::set 之类的东西暴力维护左区间前驱后继。现在加入 \(a_p\),设其前驱为 \(x\),后继为 \(y\),内部贡献先计算;对于跨区间影响,我们得到了两个新的“连续键” \(x\rightarrow a_p\) 以及 \(a_p\rightarrow y\),去掉了一个旧的“连续键” \(x\rightarrow y\),而我们可以分别找到右区间第一个能“断键”的数的位置 \(k\),把对应的变化量挂在 \(k\) 位置。然后枚举左端点为 \(p\) 的询问,将询问对应的右端点及其左侧的所有“断键”变化量都计入询问答案。右区间也做类似的事情即可。

  复杂度是 \(\mathcal O(n\log^2 n)\),隐约记得 lxl 说有基于并查集的低于这一复杂度的做法?

\(\mathscr{Code}\)

  那个线段树可以替换成离线啊,怪不得那么慢 qwq。

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)

typedef long long LL;
typedef std::pair<int, int> PII;
#define fi first
#define se second

inline char fgc() {
    static char buf[1 << 17], *p = buf, *q = buf;
    return p == q && (q = buf + fread(p = buf, 1, 1 << 17, stdin), p == q) ?
      EOF : *p++;
}

template <typename Tp = int>
inline Tp rint() {
    Tp x = 0, s = fgc(), f = 1;
    for (; s < '0' || '9' < s; s = fgc()) f = s == '-' ? -f : f;
    for (; '0' <= s && s <= '9'; s = fgc()) x = x * 10 + (s ^ '0');
    return x * f;
}

template <typename Tp>
inline void wint(Tp x) {
    if (x < 0) putchar('-'), x = -x;
    if (9 < x) wint(x / 10);
    putchar(x % 10 ^ '0');
}

inline int iabs(const int u) { return u < 0 ? -u : u; }
template <typename Tp>
inline void chkmin(Tp& u, const Tp& v) { v < u && (u = v, 0); }
template <typename Tp>
inline void chkmax(Tp& u, const Tp& v) { u < v && (u = v, 0); }
template <typename Tp>
inline Tp imin(const Tp& u, const Tp& v) { return u < v ? u : v; }
template <typename Tp>
inline Tp imax(const Tp& u, const Tp& v) { return u < v ? v : u; }

const int MAXN = 5e5, IINF = 0x3f3f3f3f;
int n, q, a[MAXN + 5], ref[MAXN + 5];
LL ans[MAXN + 5];
struct Query { int l, r, id; };
std::vector<Query> ask[MAXN * 2 + 5];

struct SegmentTree {
    int mn[MAXN << 2], mx[MAXN << 2];
    
    inline void build(const int u, const int l, const int r) {
        mn[u] = IINF, mx[u] = -1;
        if (l == r) return ;
        int mid = l + r >> 1;
        build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
    }

    inline void modify(const int u, const int l, const int r,
      const int x, const int v) {
        if (l == r) {
            if (v) mn[u] = mx[u] =  v;
            else mn[u] = IINF, mx[u] = -1;
            return ;
        }
        int mid = l + r >> 1;
        if (x <= mid) modify(u << 1, l, mid, x, v);
        else modify(u << 1 | 1, mid + 1, r, x, v);
        mn[u] = imin(mn[u << 1], mn[u << 1 | 1]);
        mx[u] = imax(mx[u << 1], mx[u << 1 | 1]);
    }

    inline int qmin(const int u, const int l, const int r,
      const int ql, const int qr) {
        if (ql <= l && r <= qr) return mn[u];
        int mid = l + r >> 1, ret = IINF;
        if (ql <= mid) chkmin(ret, qmin(u << 1, l, mid, ql, qr));
        if (mid < qr) chkmin(ret, qmin(u << 1 | 1, mid + 1, r, ql, qr));
        return ret;
    }

    inline int qmax(const int u, const int l, const int r,
      const int ql, const int qr) {
        if (ql <= l && r <= qr) return mx[u];
        int mid = l + r >> 1, ret = -1;
        if (ql <= mid) chkmax(ret, qmax(u << 1, l, mid, ql, qr));
        if (mid < qr) chkmax(ret, qmax(u << 1 | 1, mid + 1, r, ql, qr));
        return ret;
    }
} sgt;

struct BIT {
    LL val[MAXN + 5];
    bool rec[MAXN + 5]; int stk[MAXN + 5];

    inline void add(int x, const int v) {
        for (; x <= n; x += x & -x) {
            val[x] += v, !rec[x] && (rec[stk[++stk[0]] = x] = true);
        }
    }

    inline LL sum(int x) {
        LL ret = 0;
        for (; x; x -= x & -x) ret += val[x];
        return ret;
    }

    inline void restore() {
        for (int& top = stk[0]; top; --top) {
            rec[stk[top]] = false, val[stk[top]] = 0;
        }
    }
} bit;

#define TID(l, r) (l + r | (l != r))

inline void hang(const int l, const int r, const Query& qr) {
    int mid = l + r >> 1;
    if (qr.l <= mid && mid < qr.r) return ask[TID(l, r)].push_back(qr);
    if (qr.r <= mid) hang(l, mid, qr);
    else hang(mid + 1, r, qr);
}

inline void solve(const int l, const int r) {
    if (l == r) return ;
    int mid = l + r >> 1; auto& qvec(ask[TID(l, r)]);
    solve(l, mid), solve(mid + 1, r);
    if (qvec.empty()) return ;

    LL curs = 0; static std::set<int> st;
    auto insert = [&](const int x)->PII {
        auto&& it(st.insert(x).first); int p = 0, q = 0;
        if (std::next(it) != st.end()) q = *std::next(it);
        if (it != st.begin()) p = *std::prev(it);
        if (p) curs += iabs(ref[x] - ref[p]);
        if (q) curs += iabs(ref[x] - ref[q]);
        if (p && q) curs -= iabs(ref[p] - ref[q]);
        return { p, q ? q : n + 1 };
    };

    auto bondL = [&](const int x, const int y, const int op)->void {
        if (x + 1 == y) return ;
        int k = sgt.qmin(1, 1, n, x + 1, y - 1);
        if (!(1 <= k && k <= n)) return ;
        int dlt = (1 <= x ? -ref[x] : 0) + (y <= n ? -ref[y] : 0)
          + (1 <= x && y <= n ? -iabs(ref[x] - ref[y]) : 0);
        bit.add(k, op * dlt);
    };
    bit.restore(), st.clear(), curs = 0;
    rep (i, mid + 1, r) sgt.modify(1, 1, n, a[i], i);
    std::sort(qvec.begin(), qvec.end(),
      [](const Query& u, const Query& v) { return u.l > v.l; });
    for (int i = mid, j = 0; i >= l && j != qvec.size(); --i) {
        PII p = insert(a[i]);
        bondL(p.fi, a[i], 1), bondL(a[i], p.se, 1), bondL(p.fi, p.se, -1);
        for (; j != qvec.size() && qvec[j].l == i; ++j) {
            ans[qvec[j].id] += curs + bit.sum(qvec[j].r);
        }
    }
    rep (i, mid + 1, r) sgt.modify(1, 1, n, a[i], 0);

    auto bondR = [&](const int x, const int y, const int op)->void {
        if (x + 1 == y) return ;
        int k = sgt.qmax(1, 1, n, x + 1, y - 1);
        if (!(1 <= k && k <= n)) return ;
        int dlt = (1 <= x ? ref[x] : 0) + (y <= n ? ref[y] : 0)
          + (1 <= x && y <= n ? -iabs(ref[x] - ref[y]) : 0);
        bit.add(n - k + 1, op * dlt);
    };
    bit.restore(), st.clear(), curs = 0;
    rep (i, l, mid) sgt.modify(1, 1, n, a[i], i);
    std::sort(qvec.begin(), qvec.end(),
      [](const Query& u, const Query& v) { return u.r < v.r; });
    for (int i = mid + 1, j = 0; i <= r && j != qvec.size(); ++i) {
        PII p = insert(a[i]);
        bondR(p.fi, a[i], 1), bondR(a[i], p.se, 1), bondR(p.fi, p.se, -1);
        for (; j != qvec.size() && qvec[j].r == i; ++j) {
            ans[qvec[j].id] += curs + bit.sum(n - qvec[j].l + 1);
        }
    }
    rep (i, l, mid) sgt.modify(1, 1, n, a[i], 0);
}

int main() {
    n = rint(), q = rint();
    rep (i, 1, n) ref[a[i] = rint()] = i;
    rep (i, 1, q) {
        int l = rint(), r = rint();
        if (l != r) hang(1, n, { l, r, i });
    }

    sgt.build(1, 1, n), solve(1, n);
    rep (i, 1, q) wint(ans[i]), putchar('\n');
    return 0;
}

上一篇:python从入门到精通:一个月就够了


下一篇:词云图制作