【NLP高频面题 - LLM架构篇】LLM对Transformer都有哪些优化?

【NLP高频面题 - LLM架构篇】LLM对Transformer都有哪些优化?

⚠︎ 重要性:★★★ ????


NLP Github 项目:

  • NLP 项目实践fasterai/nlp-project-practice

    介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验

  • AI 藏经阁https://gitee.com/fasterai/ai-e-book

    介绍:该仓库主要分享了数百本 AI 领域电子书

  • AI 算法面经fasterai/nlp-interview-handbook#面经

    介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器

  • NLP 剑指Offerhttps://gitee.com/fasterai/nlp-interview-handbook

    介绍:该仓库汇总了 NLP 算法工程师高频面题


目前主流的大模型架构都是基于LLaMa架构的改造,LLaMa(Large Language Model Meta AI)是由Meta AI开发的一种大语言模型,其核心架构是基于Transformer模型,这是一种由多层自注意力机制和前馈神经网络组成的深度学习结构。

具体来说,LLaMa模型主要由Attention和MLP层堆叠而成,并采用了前置层归一化、RMSNorm归一化函数、SwiGLU激活函数、分组查询注意力机制和旋转位置编码等技术进行改进。

LLaMa模型具有多种参数规模版本,包括7B、13B、33B和65B等多种不同的参数量,这是目前语言领域领先模型中的主流架构。


NLP 大模型高频面题汇总

NLP基础篇
  • 【NLP 面试宝典 之 模型分类】 必须要会的高频面题
  • 【NLP 面试宝典 之 神经网络】 必须要会的高频面题
  • 【NLP 面试宝典 之 主动学习】 必须要会的高频面题
  • 【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
  • 【NLP 面试宝典 之 正则化】 必须要会的高频面题
  • 【NLP 面试宝典 之 过拟合】 必须要会的高频面题
  • 【NLP 面试宝典 之 Dropout】 必须要会的高频面题
  • 【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
  • 【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
  • 【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
  • 【NLP 面试宝典 之 置信学习】 必须要会的高频面题
  • 【NLP 面试宝典 之 伪标签】 必须要会的高频面题
  • 【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
  • 【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
  • 【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
  • 【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
BERT 模型面
  • 【NLP 面试宝典 之 BERT模型】 必须要会的高频面题
  • 【NLP 面试宝典 之 BERT变体】 必须要会的高频面题
  • 【NLP 面试宝典 之 BERT应用】 必须要会的高频面题
LLMs 微调面
  • 【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
  • 【NLP 面试宝典 之 Prompt】 必须要会的高频面题
  • 【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
  • 【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
  • 【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
上一篇:在Java中使用Apache POI导入导出Excel(六)


下一篇:NLP 的发展历程