一、 引入同步: 有一个很经典的案例,即银行取款问题。我们可以先看下银行取款的基本流程:
1)用户输入账户、密码,系统判断用户的账户、密码是否匹配。
2)用户输入取款金额。
3)系统判断账户金额是否大于取款金额。
4)如果余额大于取款金额,则取款成功;如果余额小于取款金额,则取款失败。
假设,此时有两个人,同时使用同一个账户并发取钱,我们模拟下取款流程:
public class Account { // 封装账户编号、账户余额两个Field private String accountNo; private double balance; public Account(){} // 构造器 public Account(String accountNo , double balance) { this.accountNo = accountNo; this.balance = balance; } // 此处省略了accountNo和balance两个Field的setter和getter方法 // accountNo的setter和getter方法 public void setAccountNo(String accountNo) { this.accountNo = accountNo; } public String getAccountNo() { return this.accountNo; } // balance的setter和getter方法 public void setBalance(double balance) { this.balance = balance; } public double getBalance() { return this.balance; } // 下面两个方法根据accountNo来重写hashCode()和equals()方法 public int hashCode() { return accountNo.hashCode(); } public boolean equals(Object obj) { if(this == obj) return true; if (obj !=null && obj.getClass() == Account.class) { Account target = (Account)obj; return target.getAccountNo().equals(accountNo); } return false; } }接下来,提供一个取钱的线程类,该线程类根据执行账户、取钱数量进行取钱操作,取钱的逻辑是当其余额不足时无法提取现金,当余额足够时系统吐出钞票,余额减少。
public class DrawThread extends Thread { // 模拟用户账户 private Account account; // 当前取钱线程所希望取的钱数 private double drawAmount; public DrawThread(String name, Account account, double drawAmount) { super(name); this.account = account; this.drawAmount = drawAmount; } // 当多条线程修改同一个共享数据时,将涉及数据安全问题。 public void run() { // 账户余额大于取钱数目 if (account.getBalance() >= drawAmount) { // 吐出钞票 System.out.println(getName() + "取钱成功!吐出钞票:" + drawAmount); try { Thread.sleep(1); } catch (InterruptedException ex) { ex.printStackTrace(); } // 修改余额 account.setBalance(account.getBalance() - drawAmount); System.out.println("\t余额为: " + account.getBalance()); } else { System.out.println(getName() + "取钱失败!余额不足!"); } } }
输出:
---------- java ----------
乙取钱成功!吐出钞票:800.0
甲取钱成功!吐出钞票:800.0
余额为: 200.0
余额为: -600.0
输出完成 (耗时 0 秒) - 正常终止
之所以会出现这样的错误,是因为线程调度具有不确定性,在账户余额只有1000时,取出了1600,而且账户余额出现了负值。
要解决该问题,java引入了同步监视器,在线程开始执行同步代码块之前,必须先获得同步监视器的锁定。
同步监视器的目的: 阻止多个线程对同一个共享资源进行并发访问,因此通常推荐使用可能被并发访问的共享资源充当同步监视器。
接下来,我们使用同步监视器锁定线程的执行体run()方法:
public class DrawThread extends Thread { // 模拟用户账户 private Account account; // 当前取钱线程所希望取的钱数 private double drawAmount; public DrawThread(String name , Account account , double drawAmount) { super(name); this.account = account; this.drawAmount = drawAmount; } // 当多条线程修改同一个共享数据时,将涉及数据安全问题。 public void run() { // 使用account作为同步监视器,任何线程进入下面同步代码块之前, // 必须先获得对account账户的锁定——其他线程无法获得锁,也就无法修改它 // 这种做法符合:“加锁 → 修改 → 释放锁”的逻辑 synchronized (account) { // 账户余额大于取钱数目 if (account.getBalance() >= drawAmount) { // 吐出钞票 System.out.println(getName() + "取钱成功!吐出钞票:" + drawAmount); try { Thread.sleep(1); } catch (InterruptedException ex) { ex.printStackTrace(); } // 修改余额 account.setBalance(account.getBalance() - drawAmount); System.out.println("\t余额为: " + account.getBalance()); } else { System.out.println(getName() + "取钱失败!余额不足!"); } } //同步代码块结束,该线程释放同步锁 } }
除了使用同步代码块之外,我们还可以使用同步方法。同步方法无须显示指定同步监视器,同步方法的同步监视器是this,也就是对象本身。
通过通过方法可以非常方便的实现线程安全的类:
·该类的对象可以被多个线程安全的访问。
·每个线程调用该对象的任意方法之后都将得到正确的结果。
·每个线程调用该对象的任意方法之后,该对象的状态依然保持合理状态。
public class Account { // 封装账户编号、账户余额两个Field private String accountNo; private double balance; public Account(){} // 构造器 public Account(String accountNo , double balance) { this.accountNo = accountNo; this.balance = balance; } // accountNo的setter和getter方法 public void setAccountNo(String accountNo) { this.accountNo = accountNo; } public String getAccountNo() { return this.accountNo; } // 因此账户余额不允许随便修改,所以只为balance提供getter方法, public double getBalance() { return this.balance; } // 提供一个线程安全draw()方法来完成取钱操作 public synchronized void draw(double drawAmount) { // 账户余额大于取钱数目 if (balance >= drawAmount) { // 吐出钞票 System.out.println(Thread.currentThread().getName() + "取钱成功!吐出钞票:" + drawAmount); try { Thread.sleep(1); } catch (InterruptedException ex) { ex.printStackTrace(); } // 修改余额 balance -= drawAmount; System.out.println("\t余额为: " + balance); } else { System.out.println(Thread.currentThread().getName() + "取钱失败!余额不足!"); } } // 下面两个方法根据accountNo来重写hashCode()和equals()方法 public int hashCode() { return accountNo.hashCode(); } public boolean equals(Object obj) { if(this == obj) return true; if (obj !=null && obj.getClass() == Account.class) { Account target = (Account)obj; return target.getAccountNo().equals(accountNo); } return false; } }
上面程序中增加了一个代表取钱的draw()方法,并使用了synchronized关键字修饰,该方法变为同步方法,同步方法的同步监视器是this,因此对于同一个Account账户而言,任意时刻只能有一个线程Account对象锁定,然后进入draw()方法执行取钱操作。
接下来,我们看下并发的线程类该如何写:
public class DrawThread extends Thread { // 模拟用户账户 private Account account; // 当前取钱线程所希望取的钱数 private double drawAmount; public DrawThread(String name , Account account , double drawAmount) { super(name); this.account = account; this.drawAmount = drawAmount; } // 当多条线程修改同一个共享数据时,将涉及数据安全问题。 public void run() { // 直接调用account对象的draw方法来执行取钱 // 同步方法的同步监视器是this,this代表调用draw()方法的对象。 // 也就是说:线程进入draw()方法之前,必须先对account对象的加锁。 account.draw(drawAmount); } }线程类无须事前取钱操作,而是直接调用account的draw()方法来执行取钱操作。由于已经使用了synchronized关键字修饰了draw()方法,同步方法的同步监视器就是this,而this总代表调用该方法的对象——在上面的示例中,调用draw()方法的对象时account,因此多个线程并发修改一份account之前,必须先对account对象加锁。
二、 同步锁(Lock)
Lock提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock实现允许更灵活的结构。Lock是控制多个线程对共享资源进行访问的工具。
某些锁可能允许对共享资源的并发访问,比如ReadWriteLock(读写锁)。比较常用的Lock有ReentrantLock(可重入锁),使用它可以显式的加锁、释放锁。
public class Account { // 定义锁对象 private final ReentrantLock lock = new ReentrantLock(); // 封装账户编号、账户余额两个Field private String accountNo; private double balance; public Account(){} // 构造器 public Account(String accountNo , double balance) { this.accountNo = accountNo; this.balance = balance; } // accountNo的setter和getter方法 public void setAccountNo(String accountNo) { this.accountNo = accountNo; } public String getAccountNo() { return this.accountNo; } // 因此账户余额不允许随便修改,所以只为balance提供getter方法, public double getBalance() { return this.balance; } // 提供一个线程安全draw()方法来完成取钱操作 public void draw(double drawAmount) { // 加锁 lock.lock(); try { // 账户余额大于取钱数目 if (balance >= drawAmount) { // 吐出钞票 System.out.println(Thread.currentThread().getName() + "取钱成功!吐出钞票:" + drawAmount); try { Thread.sleep(1); } catch (InterruptedException ex) { ex.printStackTrace(); } // 修改余额 balance -= drawAmount; System.out.println("\t余额为: " + balance); } else { System.out.println(Thread.currentThread().getName() + "取钱失败!余额不足!"); } } finally { // 修改完成,释放锁 lock.unlock(); } } // 下面两个方法根据accountNo来重写hashCode()和equals()方法 public int hashCode() { return accountNo.hashCode(); } public boolean equals(Object obj) { if(this == obj) return true; if (obj !=null && obj.getClass() == Account.class) { Account target = (Account)obj; return target.getAccountNo().equals(accountNo); } return false; } }
ReentrantLock锁具有可重入性,也就是说,一个线程可以对已被加锁的ReentrantLock锁再次加锁,ReentrantLock对象会维持一个计数器来之宗lock()方法的嵌入调用,线程在每次调用lock()枷锁后,必须显示调用unlock()来释放锁,所以一段被锁保护的代码可以调用另一个被相同锁保护的方法。
三、死锁
当两个线程相互等待对方释放同步监视器时就会发生死锁,Java虚拟机没有监测,也没有采取措施处理死锁情况,所以多线程编程时应该采取避免死锁出现。
死锁的举例:
class A { public synchronized void foo( B b ) { System.out.println("当前线程名: " + Thread.currentThread().getName() + " 进入了A实例的foo方法" ); //① try { Thread.sleep(200); } catch (InterruptedException ex) { ex.printStackTrace(); } System.out.println("当前线程名: " + Thread.currentThread().getName() + " 企图调用B实例的last方法"); //③ b.last(); } public synchronized void last() { System.out.println("进入了A类的last方法内部"); } } class B { public synchronized void bar( A a ) { System.out.println("当前线程名: " + Thread.currentThread().getName() + " 进入了B实例的bar方法" ); //② try { Thread.sleep(200); } catch (InterruptedException ex) { ex.printStackTrace(); } System.out.println("当前线程名: " + Thread.currentThread().getName() + " 企图调用A实例的last方法"); //④ a.last(); } public synchronized void last() { System.out.println("进入了B类的last方法内部"); } } public class DeadLock implements Runnable { A a = new A(); B b = new B(); public void init() { Thread.currentThread().setName("主线程"); // 调用a对象的foo方法 a.foo(b); System.out.println("进入了主线程之后"); } public void run() { Thread.currentThread().setName("副线程"); // 调用b对象的bar方法 b.bar(a); System.out.println("进入了副线程之后"); } public static void main(String[] args) { DeadLock dl = new DeadLock(); // 以dl为target启动新线程 new Thread(dl).start(); // 调用init()方法 dl.init(); } }