【模型】EfficientvitSAM
# segment anything
from efficientvit.sam_model_zoo import create_efficientvit_sam_model
from efficientvit.models.efficientvit.sam import EfficientViTSamAutomaticMaskGenerator
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
def write_masks_to_folder(masks, path: str) -> None:
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
metadata = [header]
for i, mask_data in enumerate(masks):
mask = mask_data["segmentation"]
filename = f"{i}.png"
cv2.imwrite(os.path.join(path, filename), mask * 255)
mask_metadata = [
str(i),
str(mask_data["area"]),
*[str(x) for x in mask_data["bbox"]],
*[str(x) for x in mask_data["point_coords"][0]],
str(mask_data["predicted_iou"]),
str(mask_data["stability_score"]),
*[str(x) for x in mask_data["crop_box"]],
]
row = ",".join(mask_metadata)
metadata.append(row)
metadata_path = os.path.join(path, "metadata.csv")
with open(metadata_path, "w") as f:
f.write("\n".join(metadata))
return
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.85]])
img[m] = color_mask
plt.imshow(img)
path = "./1.jpg"
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(20,20))
plt.imshow(image)
plt.axis('off')
efficientvit_sam = create_efficientvit_sam_model(name="efficientvit-sam-xl1", pretrained=True)
efficientvit_sam = efficientvit_sam.cpu().eval()
efficientvit_mask_generator = EfficientViTSamAutomaticMaskGenerator(efficientvit_sam)
masks = efficientvit_mask_generator.generate(image)
write_masks_to_folder(masks, "./output")# 在背景图的基础上直接覆盖分割图
show_anns(masks)
plt.show()