第二章:Vgg11-19网络实现的图像多类别分类任务:水果分类

目录

1. 前言

2. vgg 的水果分类

2.1 训练

2.2 训练结果

2.3 推理


1. 前言

VGG网络是牛津大学研究人员提出的一种卷积神经网络(CNN)架构。

它被广泛用于图像分类和特征提取任务。VGG网络由一系列卷积层和完全连接的层组成。网络架构的特点是简单,整个网络中只使用了3x3卷积滤波器和最大池化层。VGG模型以其深度架构而闻名,VGG16和VGG19等变体分别具有16层和19层。VGG网络对后续CNN架构的发展产生了影响,并在ImageNet等图像分类基准上取得了优异的性能。

vgg网络模型的亮点:

  • 以连续的3*3卷积替代更大的卷积核(7*7),经过证明,这种小的连续卷积核实现的感受野和较大的卷积一样,并且计算量要少得多
  • 更简单的模型架构,完全由卷积+下采样实现,避免了以往杂乱无章的网络架构

值得一提的是,vgg模型的效果非常出色,不过因为网络很臃肿导致完全训练不动,这也是vgg最大的鸡肋。

本人认为,vgg模型还是比较成功的,首先是连续的3*3卷积可以替代更大的卷积核。几乎从vgg以后,卷积核全部换成了3*3。并且vgg模型的简单,也为后续的改进提供思路,像这种简单的卷积、下采样的堆叠就可以实现更好的效果,虽然后续的resnet提出了shortcut的瓶颈结构,但原理其实也是下采样一半,卷积核通道数翻倍,就是vgg架构的变迁而已

2. vgg 的水果分类

项目下载:图像识别项目:vgg系列网络(vgg11、vgg13、vgg16等)实现的迁移学习、图像识别项目:33种水果图像分类资源-****文库

其中,data是数据集,inference用于推理图像,runs保存训练生成的结果,train用于训练,predict用于推理,utils是需要的工具函数

这里没有提供单独的验证脚本,因为本人习惯,集成在train里面,在训练的时候一起评估了

2.1 训练

水果数据集经过处理如下:

这里是33类别的水果分类,训练集约有11k张图片,验证集约有5k张图片

标签保存在字典里(代码会自动生成)

{
    "0": "Apple Braeburn",
    "1": "Apple Granny Smith",
    "2": "Apricot",
    "3": "Avocado",
    "4": "Banana",
    "5": "Blueberry",
    "6": "Cactus fruit",
    "7": "Cantaloupe",
    "8": "Cherry",
    "9": "Clementine",
    "10": "Corn",
    "11": "Cucumber Ripe",
    "12": "Grape Blue",
    "13": "Kiwi",
    "14": "Lemon",
    "15": "Limes",
    "16": "Mango",
    "17": "Onion White",
    "18": "Orange",
    "19": "Papaya",
    "20": "Passion Fruit",
    "21": "Peach",
    "22": "Pear",
    "23": "Pepper Green",
    "24": "Pepper Red",
    "25": "Pineapple",
    "26": "Plum",
    "27": "Pomegranate",
    "28": "Potato Red",
    "29": "Raspberry",
    "30": "Strawberry",
    "31": "Tomato",
    "32": "Watermelon"
}

2.2 训练结果

本人用vgg11进行训练,效果太好了,直接100%准确率....

训练可以选择的指标如下:

    parser.add_argument("--model", default='vgg11', type=str,help='vgg11、vgg13、vgg16、vgg19、vgg11_bn、vgg13_bn、vgg16_bn、vgg19_bn')
    parser.add_argument("--pretrained", default=True, type=bool)       # 采用官方权重
    parser.add_argument("--freeze_layers", default=True, type=bool)    # 冻结权重

    parser.add_argument("--batch-size", default=4, type=int)
    parser.add_argument("--epochs", default=10, type=int)

    parser.add_argument("--optim", default='SGD', type=str,help='SGD、Adam')         # 优化器选择

    parser.add_argument('--lr', default=0.001, type=float)
    parser.add_argument('--lrf',default=0.0001,type=float)                  # 最终学习率 = lr * lrf

需要注意的是,网络的输出是经过更改的,代码会根据数据集自动生成num classes,不需要自行设置

    tmp = net.classifier[3].out_features
    net.classifier[6] = torch.nn.Linear(tmp,num,bias=True)

结果在runs里面下:

这里的训练日志全部在log的json文件中,参考如下:

{
    "train parameters": {
        "model": "vgg11",
        "pretrained": true,
        "freeze_layers": true,
        "batch_size": 4,
        "epochs": 10,
        "optim": "SGD",
        "lr": 0.001,
        "lrf": 0.0001
    },
    "total paramerters": 128901537,
    "train paramerters": 119681057,
    "epoch:0": {
        "train info": {
            "accuracy": 0.9742591024547211,
            "Apple Braeburn": {
                "Precision": 0.948,
                "Recall": 0.9507,
                "Specificity": 0.9984,
                "F1 score": 0.9493
            },
            "Apple Granny Smith": {
                "Precision": 0.9883,
                "Recall": 0.9768,
                "Specificity": 0.9997,
                "F1 score": 0.9825
            },
            "Apricot": {
                "Precision": 0.9791,
                "Recall": 0.9507,
                "Specificity": 0.9994,
                "F1 score": 0.9647
            },
            "Avocado": {
                "Precision": 0.9691,
                "Recall": 0.9431,
                "Specificity": 0.9992,
                "F1 score": 0.9559
            },
            "Banana": {
                "Precision": 0.9912,
                "Recall": 0.9883,
                "Specificity": 0.9997,
                "F1 score": 0.9897
            },
            "Blueberry": {
                "Precision": 0.9753,
                "Recall": 0.9753,
                "Specificity": 0.9993,
                "F1 score": 0.9753
            },
            "Cactus fruit": {
                "Precision": 0.9797,
                "Recall": 0.9825,
                "Specificity": 0.9994,
                "F1 score": 0.9811
            },
            "Cantaloupe": {
                "Precision": 0.9885,
                "Recall": 0.9942,
                "Specificity": 0.9997,
                "F1 score": 0.9913
            },
            "Cherry": {
                "Precision": 0.9883,
                "Recall": 0.9768,
                "Specificity": 0.9997,
                "F1 score": 0.9825
            },
            "Clementine": {
                "Precision": 0.9218,
                "Recall": 0.9621,
                "Specificity": 0.9976,
                "F1 score": 0.9415
            },
            "Corn": {
                "Precision": 1.0,
                "Recall": 0.9905,
                "Specificity": 1.0,
                "F1 score": 0.9952
            },
            "Cucumber Ripe": {
                "Precision": 0.9926,
                "Recall": 0.9782,
                "Specificity": 0.9998,
                "F1 score": 0.9853
            },
            "Grape Blue": {
                "Precision": 0.9717,
                "Recall": 0.9956,
                "Specificity": 0.9982,
                "F1 score": 0.9835
            },
            "Kiwi": {
                "Precision": 0.9698,
                "Recall": 0.9817,
                "Specificity": 0.9991,
                "F1 score": 0.9757
            },
            "Lemon": {
                "Precision": 0.971,
                "Recall": 0.971,
                "Specificity": 0.9991,
                "F1 score": 0.971
            },
            "Limes": {
                "Precision": 0.9443,
                "Recall": 0.9883,
                "Specificity": 0.9983,
                "F1 score": 0.9658
            },
            "Mango": {
                "Precision": 0.9561,
                "Recall": 0.9534,
                "Specificity": 0.9987,
                "F1 score": 0.9547
            },
            "Onion White": {
                "Precision": 0.9741,
                "Recall": 0.9805,
                "Specificity": 0.9993,
                "F1 score": 0.9773
            },
            "Orange": {
                "Precision": 0.9852,
                "Recall": 0.9911,
                "Specificity": 0.9996,
                "F1 score": 0.9881
            },
            "Papaya": {
                "Precision": 0.9431,
                "Recall": 0.913,
                "Specificity": 0.9983,
                "F1 score": 0.9278
            },
            "Passion Fruit": {
                "Precision": 0.9941,
                "Recall": 0.9767,
                "Specificity": 0.9998,
                "F1 score": 0.9853
            },
            "Peach": {
                "Precision": 0.9263,
                "Recall": 0.9478,
                "Specificity": 0.9977,
                "F1 score": 0.9369
            },
            "Pear": {
                "Precision": 0.9754,
                "Recall": 0.9754,
                "Specificity": 0.9989,
                "F1 score": 0.9754
            },
            "Pepper Green": {
                "Precision": 0.9936,
                "Recall": 0.9936,
                "Specificity": 0.9998,
                "F1 score": 0.9936
            },
            "Pepper Red": {
                "Precision": 0.9789,
                "Recall": 0.9936,
                "Specificity": 0.9991,
                "F1 score": 0.9862
            },
            "Pineapple": {
                "Precision": 0.9971,
                "Recall": 0.9913,
                "Specificity": 0.9999,
                "F1 score": 0.9942
            },
            "Plum": {
                "Precision": 0.9904,
                "Recall": 0.984,
                "Specificity": 0.9997,
                "F1 score": 0.9872
            },
            "Pomegranate": {
                "Precision": 0.9531,
                "Recall": 0.942,
                "Specificity": 0.9986,
                "F1 score": 0.9475
            },
            "Potato Red": {
                "Precision": 0.9773,
                "Recall": 0.9556,
                "Specificity": 0.9994,
                "F1 score": 0.9663
            },
            "Raspberry": {
                "Precision": 1.0,
                "Recall": 0.9883,
                "Specificity": 1.0,
                "F1 score": 0.9941
            },
            "Strawberry": {
                "Precision": 0.9741,
                "Recall": 0.9826,
                "Specificity": 0.9992,
                "F1 score": 0.9783
            },
            "Tomato": {
                "Precision": 0.9728,
                "Recall": 0.9691,
                "Specificity": 0.9988,
                "F1 score": 0.9709
            },
            "Watermelon": {
                "Precision": 0.997,
                "Recall": 0.982,
                "Specificity": 0.9999,
                "F1 score": 0.9894
            },
            "mean precision": 0.9747666666666668,
            "mean recall": 0.9735090909090911,
            "mean specificity": 0.9991909090909091,
            "mean f1 score": 0.9740454545454547
        },
        "valid info": {
            "accuracy": 0.9924662965880403,
            "Apple Braeburn": {
                "Precision": 0.9671,
                "Recall": 1.0,
                "Specificity": 0.999,
                "F1 score": 0.9833
            },
            "Apple Granny Smith": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Apricot": {
                "Precision": 0.9545,
                "Recall": 1.0,
                "Specificity": 0.9986,
                "F1 score": 0.9767
            },
            "Avocado": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Banana": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Blueberry": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Cactus fruit": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Cantaloupe": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Cherry": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Clementine": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Corn": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Cucumber Ripe": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Grape Blue": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Kiwi": {
                "Precision": 0.9789,
                "Recall": 1.0,
                "Specificity": 0.9994,
                "F1 score": 0.9893
            },
            "Lemon": {
                "Precision": 0.9735,
                "Recall": 1.0,
                "Specificity": 0.9992,
                "F1 score": 0.9866
            },
            "Limes": {
                "Precision": 0.9932,
                "Recall": 1.0,
                "Specificity": 0.9998,
                "F1 score": 0.9966
            },
            "Mango": {
                "Precision": 1.0,
                "Recall": 0.9932,
                "Specificity": 1.0,
                "F1 score": 0.9966
            },
            "Onion White": {
                "Precision": 1.0,
                "Recall": 0.9924,
                "Specificity": 1.0,
                "F1 score": 0.9962
            },
            "Orange": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Papaya": {
                "Precision": 0.9859,
                "Recall": 0.9524,
                "Specificity": 0.9996,
                "F1 score": 0.9689
            },
            "Passion Fruit": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Peach": {
                "Precision": 0.9074,
                "Recall": 1.0,
                "Specificity": 0.9969,
                "F1 score": 0.9515
            },
            "Pear": {
                "Precision": 0.9951,
                "Recall": 0.9808,
                "Specificity": 0.9998,
                "F1 score": 0.9879
            },
            "Pepper Green": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Pepper Red": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Pineapple": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Plum": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Pomegranate": {
                "Precision": 1.0,
                "Recall": 0.9252,
                "Specificity": 1.0,
                "F1 score": 0.9611
            },
            "Potato Red": {
                "Precision": 1.0,
                "Recall": 0.8963,
                "Specificity": 1.0,
                "F1 score": 0.9453
            },
            "Raspberry": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Strawberry": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Tomato": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "Watermelon": {
                "Precision": 1.0,
                "Recall": 1.0,
                "Specificity": 1.0,
                "F1 score": 1.0
            },
            "mean precision": 0.9925939393939395,
            "mean recall": 0.9921303030303031,
            "mean specificity": 0.9997666666666667,
            "mean f1 score": 0.992121212121212
        }
    },

 

仅仅跑了几轮,已经100准确率了

 

loss和acc曲线:

其他的评估指标曲线:

训练集和测试集的混淆矩阵:

2.3 推理

推理需要predict脚本,设定的参数在下面,model要保证和训练的版本一样

    parser.add_argument("--model", default='vgg11', type=str,help='vgg11、vgg13、vgg16、vgg19、vgg11_bn、vgg13_bn、vgg16_bn、vgg19_bn')
    parser.add_argument("--weights", default='runs/weights/best.pth', type=str, help='best、last')

只需要把想要推理的数据放在infer_img下即可

运行即可推理 :

上一篇:github.io出现的问题及解决方案


下一篇:火山引擎VeDI数据服务平台:在电商场景中,如何解决API编排问题?