【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例-目录

第一章(更新中)
  • (Ⅰ):疾病传播预测:
  • (Ⅱ):疾病诊断分类:通过分析心电图的时序特征来区分不同类型的心脏疾病
第二章 财经金融
  • (Ⅰ):基于前馈神经网络 FNN 实现股票价格单变量时序预测(PyTorch版)
  • (Ⅱ):基于循环神经网络 RNN 实现股票价格单变量时序预测(PyTorch版)
  • (Ⅲ):基于门控循环单元 GRU 实现股票价格单变量时序预测(PyTorch版)
  • (Ⅳ):基于长短期记忆 LSTM 实现股票价格单变量时序预测(PyTorch版)
  • (Ⅴ):基于双向门控循环单元BiGRU实现股票价格多变量时序预测(PyTorch版)
  • (Ⅵ):基于双向长短期记忆网络BiLSTM实现股票价格多变量时序预测(PyTorch版)
  • (Ⅶ):基于CNN(二维卷积Conv2D)+LSTM 实现股票价格多变量时序预测(PyTorch版)
  • (Ⅷ):基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票价格多变量时序预测(PyTorch版)
  • (Ⅸ):基于LSTM-Transformer混合模型实现股票价格多变量时序预测(PyTorch版)

第三章 交通运输
  • (※):基于长短期记忆 LSTM 的送餐时间预测

  • (Ⅰ):基于Transformer模型实现交通流量时序预测(PyTorch版) | Transformer |

  • (Ⅱ):基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版) | CNN-Transformer |

  • (Ⅲ):基于BiGRU+Transformer混合模型实现交通流量时序预测(PyTorch版) | BiGRU-Transformer |

  • (Ⅳ):基于BiLSTM+Transformer混合模型实现交通流量时序预测(PyTorch版) | BiLSTM-Transformer |

  • 交通拥堵异常检验

  • 交通流量概率预测

第七章 环境科学
  • Multivariate Time series Binary Classification
    • (Ⅰ):深度学习:基于人工神经网络 ANN 的降雨预测
    • (Ⅱ):基于 CNN(一维卷积Conv1D)实现降雨多变量时序分类——明日是否降雨(PyTorch版)
    • (Ⅲ):基于 BiLSTM+Attention 实现降雨预测多变量时序分类——明日是否降雨(PyTorch版)
  • Multivariate Time-series Forecasting
    • 气温
第八章 能源电力(更新中)
  • Multivariate Time-series Forecasting
    • (Ⅰ):基于CNN+BiGRU实现风力涡轮机发电量多变量时序预测(PyTorch版)
    • (Ⅰ):基于TCN+BiGRU实现风力涡轮机发电量多变量时序预测(PyTorch版)
    • (Ⅰ):基于BiGRU+Attention实现风力涡轮机发电量多变量时序预测(PyTorch版)
    • (Ⅰ):基于BiGRU+Transformer实现风力涡轮机发电量多变量时序预测(PyTorch版)
  • Time Series Anomaly Detection
    • 电力负荷异常检验
第十章 语音语言处理
# 附件源码 # 参考链接 # 参考书籍
上一篇:使用socket库创建简单的客户端和服务器


下一篇:[MySQL]DQL语句(一)