Matlab实现白鲸优化算法优化回声状态网络模型 (BWO-ESN)(附源码)

目录
1.内容介绍
2部分代码
3.实验结果
4.内容获取


1内容介绍


2部分代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
load bwand
%%  导入数据

x=bwand;
[r,s] = size(x);
output=x(:,s);
input=x(:,1:s-1);  %nox

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


%%  获取最优参数

hidden = WBest_pos(1);             % 储备池规模
lr     = WBest_pos(2);             % 学习率(更新速度)
reg    = WBest_pos(3);             % 正则化系数

%%  训练模型
net = esn_train(p_train, t_train, hidden, lr, Init, reg);

%%  预测
t_sim1 = esn_sim(net, p_train);
t_sim2 = esn_sim(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);

%%  绘图
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
%% 预测集绘图
figure
plot(1:N,T_test,'r-*',1:N,T_sim2,'b-+','LineWidth',0.5)
legend('真实值','BWO-ESN预测值')
xlabel('预测样本')
ylabel('预测结果')
string={'测试集预测结果对比';['(R^2 =' num2str(R2) ' RMSE= ' num2str(error2)  ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')']};
title(string)

%% 测试集误差图
figure  
ERROR3=T_test-T_sim2
plot(T_test-T_sim2,'b-*','LineWidth',0.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('BWO-ESN预测输出误差')


3实验结果


4内容获取


主页简介欢迎自取,点点关注,非常感谢!
Matlab实现BWO-ESN白鲸优化算法优化回声状态网络模型源码介绍:
MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换),
1.多种变量输入,单个变量输出;
2.MatlabR2018b及以上版本一键运行;
3.具有良好的编程习惯,程序均包含简要注释。

上一篇:HarmonyOS学习(十五)——数据管理(四) 用户首选项封装


下一篇:宠物咖啡馆在线互动:SpringBoot框架的创新实现