Webpack: 模块编译打包及运行时Runtime逻辑

概述

回顾最近几节内容,Webpack 运行过程中首先会根据 Module 之间的引用关系构建 ModuleGraph 对象;接下来按照若干内置规则将 Module 组织进不同 Chunk 对象中,形成 ChunkGraph 关系图。

接着,构建流程将来到最后一个重要步骤:生成产物代码,这个过程会将所有 Module 内容一一转换为适当的产物代码形态,并以 Chunk 为单位合并 Module 产物代码,之后根据 Module 中出现的特性依赖,补充相应运行时代码,最终构建出我们日常所见的 Webpack Bundle 代码文件。

本文将深入分析这个过程的源码,详细剖析模块转译、运行时依赖分析、产物合并的具体实现逻辑。

什么是模块转译?

众所周知,Webpack 的打包功能并不是将原始文件代码“复制-粘贴”到产物文件那么简单,为了确保代码能在不同环境 —— 多种版本的浏览器、Node、Electron 等正常运行,构建时需要对模块源码适当做一些转换操作,这一点在大多数构建产物的内容中都有所体现,例如:
请添加图片描述

示例包含 index.jsname.js 两个 JS 代码模块,经过 Webpack 构建后生成如图右侧所示的产物文件,文件自上而下包含三块内容:

  • name.js 模块对应的、函数形态的转译代码;
  • Webpack 按需注入的运行时代码;
  • index.js 模块对应的 IIFE(立即执行函数) 转译代码。

其中,name.jsindex.js 对应的产物代码,与源码相比,虽然语义与功能都基本相同,但表现形式发生了较大变化,例如 index.js 编译前后的内容:
在这里插入图片描述

  • 整个模块被包裹进 IIFE(立即执行函数)中;
  • 添加 __webpack_require__.r(__webpack_exports__); 语句,用于适配 ESM 规范;
  • 源码中的 import 语句被转译为 __webpack_require__ 函数调用;
  • 源码 console 语句所使用的 name 变量被转译为 _name__WEBPACK_IMPORTED_MODULE_0__.default
  • 添加若干注释。

编译前后代码功能逻辑相同,但替换掉这些 ES 高级特性之后,却能让应用平稳运行在低版本浏览器中,那么,这种代码转换功能具体是怎么实现的呢?

模块转译主流程

在前文《Webpack: 三种Chunk产物的打包逻辑》中,我们已经介绍了 compilation.seal 函数内会调用 buildChunkGraph 生成 Chunk 依赖关系图,之后 Webpack 就可以分析出:

  • 需要输出那些 Chunk;
  • 每个 Chunk 包含那些 Module,以及每个 Module 经过 Loader 翻译后的代码内容;
  • Chunk 与 Chunk 之间的父子依赖关系。

在此之后 seal 函数会开始触发一堆优化钩子,借助插件对 ChunkGraph 做诸如合并、拆分、删除无效 Chunk 等优化操作,并在最后调用 compilation.codeGeneration 方法:

class Compilation {
  seal(callback) {
    // 初始化 ChunkGraph、ChunkGroup 对象
    for (const [name, { dependencies, includeDependencies, options }] of this.entries) {
      // ...
    }
    for (const [name,{options: { dependOn, runtime },},] of this.entries) {
      // ...
    }
    // 构建 ChunkGroup
    buildChunkGraph(this, chunkGraphInit);
    // 执行诸多优化钩子
    this.hooks.optimize.call();
    // ...

    this.hooks.optimizeTree.callAsync(this.chunks, this.modules, (err) => {
      // ...
      this.hooks.optimizeChunkModules.callAsync(this.chunks, this.modules, (err) => {
          // ...
          this.hooks.beforeCodeGeneration.call();
          // 开始生成最终产物代码
          this.codeGeneration(/* ... */);
        }
      );
    });
  }
}

codeGeneration 方法负责生成最终的资产代码,主要流程:

请添加图片描述

有三个关键步骤。

  • 单模块转译:这一步主要用于计算模块实际输出代码,遍历 compilation.modules 数组,调用 module 对象的 codeGeneration 方法,执行模块转译计算:

    • 调用 JavascriptGeneratorgenerate 方法;

    • 遍历 module 对象的 dependenciespresentationalDependencies 数组;

    • 执行 每个数组项 dependeny 对象对应的 template.apply 方法,方法中视情况可能产生三种副作用:

      • 直接修改模块 source 数据,如 ConstDependency.Template
      • 将结果记录到 initFragments 数组如 HarmonyExportSpecifierDependency
      • 将运行时依赖记录到 runtimeRequirements 数组如 HarmonyImportDependency
  • 收集运行时依赖:计算模块运行时,首先调用 compilation.processRuntimeRequirements 方法,将上一步生成的 runtimeRequirements 数组一一转换为 RuntimeModule 对象,并挂载到 ChunkGroup 中。

  • 模块合并:调用 compilation.createChunkAssets 方法,以 Chunk 为单位,将相应的所有 moduleruntimeModule 按规则塞进「产物框架」 中,最终合并输出成完整的 Bundle 文件。

这些就是 Webpack 最终消费 ModuleGraph 与 ChunkGraph,生成最终产物代码的关键过程,总结而言,就是先遍历所有模块依赖对象,收集模块编译结果与运行时依赖,之后将这些内容合并在一起输出为 Bundle 文件。

下面我们逐一展开,了解每个步骤的细节。

单模块转译

模块转译」 操作从 module.codeGeneration 调用开始,对应到上述流程图的:
请添加图片描述
这个过程首先调用 JavascriptGenerator.generate 函数,遍历模块的 dependencies 数组,依次调用依赖对象对应的 Template 子类 apply 方法更新模块内容,说起来有点绕,我将重要步骤抽取为如下伪代码:

class JavascriptGenerator {
    generate(module, generateContext) {
        // 先取出 module 的原始代码内容
        const source = new ReplaceSource(module.originalSource());
        const { dependencies, presentationalDependencies } = module;
        const initFragments = [];
        for (const dependency of [...dependencies, ...presentationalDependencies]) {
            // 找到 dependency 对应的 template
            const template = generateContext.dependencyTemplates.get(dependency.constructor);
            // 调用 template.apply,传入 source、initFragments
            // 在 apply 函数可以直接修改 source 内容,或者更改 initFragments 数组,影响后续转译逻辑
            template.apply(dependency, source, {initFragments})
        }
        // 遍历完毕后,调用 InitFragment.addToSource 合并 source 与 initFragments
        return InitFragment.addToSource(source, initFragments, generateContext);
    }
}

// Dependency 子类
class xxxDependency extends Dependency {}

// Dependency 子类对应的 Template 定义
const xxxDependency.Template = class xxxDependencyTemplate extends Template {
    apply(dep, source, {initFragments}) {
        // 1. 直接操作 source,更改模块代码
        source.replace(dep.range[0], dep.range[1] - 1, 'some thing')
        // 2. 通过添加 InitFragment 实例,补充代码
        initFragments.push(new xxxInitFragment())
    }
}

从上述伪代码可以看出,JavascriptGenerator.generate 函数的逻辑相对比较固化:

  1. 初始化 sourceinitFragments 等变量;
  2. 遍历 module 对象的依赖数组,找到每个 dependency 对应的 template 对象,调用 template.apply 函数修改模块内容;
  3. 调用 InitFragment.addToSource 方法,合并 sourceinitFragments 数组,生成最终结果。

这里的重点是 JavascriptGenerator.generate 函数并不操作 module 源码,它仅仅提供一个执行框架,真正处理模块内容转译的逻辑都在 xxxDependencyTemplate 对象的 apply 函数实现,如上例伪代码中 24-28 行。

每个 Dependency 子类都会挂载一个 Template 子类,且通常这两个类都会写在同一个文件中,例如 ConstDependencyConstDependencyTemplateNullDependencyNullDependencyTemplate

Webpack 从「构建」(make) 阶段开始,就会通过 Dependency 子类记录不同情况下模块之间的依赖关系;到「封装」(seal) 阶段再通过 Template 子类修改 module 代码,最终 ModuleTemplateJavascriptGeneratorDependency 四个关键类形成如下交互关系:

请添加图片描述

Template 对象会通过三种方法影响产物代码:

  • 直接操作 source 对象,修改模块代码,该对象最初的内容等于模块的源码,经过多个 Template.apply 函数流转后逐渐被替换成新的代码形式;
  • 操作 initFragments 数组,在模块源码之外插入补充代码片段;
  • 将运行时依赖记录到 runtimeRequirements 数组。

其中第 1、2 种操作所产生的副作用,最终都会被传入 InitFragment.addToSource 函数,合并成最终结果。

通过 source 修改模块代码:

先来看看 source 操作,webpack-sources 是 Webpack 中用于编辑字符串的一套工具类库,它提供了一系列代码编辑方法,包括:

  • 字符串合并、替换、插入等;
  • 模块代码缓存、sourcemap 映射、hash 计算等。

Webpack 内部以及社区的很多插件、loader 都会使用 webpack-sources 库编辑代码内容,包括上文介绍的 Template.apply 体系。逻辑上,在启动模块代码生成流程时,Webpack 会先用模块原始内容初始化 Source 对象,即:

const source = new ReplaceSource(module.originalSource());

之后,不同 Dependency 子类按序、按需更改 source 内容,例如 HarmonyImportSpecifierDependency 中:

HarmonyImportSpecifierDependency.Template = class HarmonyImportSpecifierDependencyTemplate extends (
  HarmonyImportDependency.Template
) {
  apply(dependency, source, templateContext) {
    const dep = /** @type {HarmonyImportSpecifierDependency} */ (dependency);
    // ...
    const ids = dep.getIds(moduleGraph);
    const exportExpr = this._getCodeForIds(dep, source, templateContext, ids);
    const range = dep.range;
    if (dep.shorthand) {
      source.insert(range[1], `: ${exportExpr}`);
    } else {
      source.replace(range[0], range[1] - 1, exportExpr);
    }
  }
};

举个例子,对于下面这段简单代码:

import bar from "./bar";
console.log(bar);

会产生 HarmonyImportSpecifierDependencyConstDependency 两个依赖对象,之后:

import bar from "./bar";
console.log(bar);

// 首先,HarmonyImportSpecifierDependency 替换导入变量名:
import bar from "./bar";
console.log(_bar__WEBPACK_IMPORTED_MODULE_1__["default"]);

// 之后,ConstDependency 删除模块导入语句:
console.log(_bar__WEBPACK_IMPORTED_MODULE_1__["default"]);

可以看出,这部分逻辑的效果与 Babel 类似,会直接修改模块源码,实现语言层面的向下兼容。但这还不够,还需要将这段代码包裹进 Webpack 的模块框架中,这部分工作将由 initFragments 数组完成。

initFragments 数组的作用:

上面我们聊到,除直接操作 source 外,Template.apply 中还可能通过 initFragments 数组达成修改模块产物的效果。initFragments 数组项为 InitFragment 子类实例,它们带有两个关键函数:getContentgetEndContent,分别用于获取代码片段的头尾部分。

例如 HarmonyImportDependencyTemplateapply 函数中:

HarmonyImportDependency.Template = class HarmonyImportDependencyTemplate extends (
  ModuleDependency.Template
) {
  apply(dependency, source, templateContext) {
    // ...
    templateContext.initFragments.push(
        new ConditionalInitFragment(
          importStatement[0] + importStatement[1],
          InitFragment.STAGE_HARMONY_IMPORTS,
          dep.sourceOrder,
          key,
          runtimeCondition
        )
      );
    //...
  }
 }

也就是根据模块需求,不断增加新的代码片段 initFragments,所有 Dependency 执行完毕后,接着就需要调用 InitFragment.addToSource 函数将两者合并为模块产物。addToSource 的核心代码如下:

class InitFragment {
  static addToSource(source, initFragments, generateContext) {
    // 先排好顺序
    const sortedFragments = initFragments
      .map(extractFragmentIndex)
      .sort(sortFragmentWithIndex);
    // ...

    const concatSource = new ConcatSource();
    const endContents = [];
    for (const fragment of sortedFragments) {
        // 合并 fragment.getContent 取出的片段内容
      concatSource.add(fragment.getContent(generateContext));
      const endContent = fragment.getEndContent(generateContext);
      if (endContent) {
        endContents.push(endContent);
      }
    }

    // 合并 source
    concatSource.add(source);
    // 合并 fragment.getEndContent 取出的片段内容
    for (const content of endContents.reverse()) {
      concatSource.add(content);
    }
    return concatSource;
  }
}

可以看到,addToSource 函数的逻辑:

  • 遍历 initFragments 数组,按顺序合并 fragment.getContent() 的产物;
  • 合并 source 对象;
  • 遍历 initFragments 数组,按顺序合并 fragment.getEndContent() 的产物。

所以,模块代码合并操作主要就是用 initFragments 数组一层一层包裹住模块代码 source,而两者都在 Template.apply 层面维护。还是上面那个简单例子,经过这段 Template 处理后,最终转化为:

import bar from "./bar";
console.log(bar);

// 首先,HarmonyImportSpecifierDependency 替换导入变量名:
import bar from "./bar";
console.log(_bar__WEBPACK_IMPORTED_MODULE_1__["default"]);

// 之后,ConstDependency 删除模块导入语句:
console.log(_bar__WEBPACK_IMPORTED_MODULE_1__["default"]);

// 经过 ConditionalInitFragment 处理:
/* harmony import */ var _bar__WEBPACK_IMPORTED_MODULE_1__ = __webpack_require__(/*! ./bar */ "./src/bar.js");
console.log(_bar__WEBPACK_IMPORTED_MODULE_1__["default"]);

简单总结一下,Webpack 生成 ModuleGraph 与 ChunkGraph 后,会立即开始遍历所有 Dependency 对象,依次调用对象的静态方法 template.apply 修改 module 代码,最后再将所有变更后的 source 与模块脚手架 initFragments 合并为最终产物,完成从单个模块的源码形态到产物形态的转变。

自定义 Template.apply 示例:

模块转译」 步骤流程比较长,整体逻辑很复杂,为了加深理解,接下来我们尝试开发一个简单的 Banner 插件:实现在每个模块前自动插入一段字符串。实现上,插件主要涉及 DependencyTemplatehooks 对象,代码:

const { Dependency, Template } = require("webpack");

class DemoDependency extends Dependency {
  constructor() {
    super();
  }
}

DemoDependency.Template = class DemoDependencyTemplate extends Template {
  apply(dependency, source) {
    const today = new Date().toLocaleDateString();
    source.insert(0, `/* Author: Tecvan */
/* Date: ${today} */
`);
  }
};

module.exports = class DemoPlugin {
  apply(compiler) {
    compiler.hooks.thisCompilation.tap("DemoPlugin", (compilation) => {
      // 调用 dependencyTemplates ,注册 Dependency 到 Template 的映射
      compilation.dependencyTemplates.set(
        DemoDependency,
        new DemoDependency.Template()
      );
      compilation.hooks.succeedModule.tap("DemoPlugin", (module) => {
        // 模块构建完毕后,插入 DemoDependency 对象
        module.addDependency(new DemoDependency());
      });
    });
  }
};

示例插件的关键步骤:

  • 编写 DemoDependencyDemoDependencyTemplate 类,其中 DemoDependency 仅做示例用,没有实际功能;DemoDependencyTemplate 则在其 apply 中调用 source.insert 插入字符串,如示例代码第 10-14 行;
  • 使用 compilation.dependencyTemplates 注册 DemoDependencyDemoDependencyTemplate 的映射关系;
  • 使用 thisCompilation 钩子取得 compilation 对象;
  • 使用 succeedModule 钩子订阅 module 构建完毕事件,并调用 module.addDependency 方法添加 DemoDependency 依赖。

完成上述操作后,module 对象的产物在生成过程就会调用到 DemoDependencyTemplate.apply 函数,插入我们定义好的字符串,效果如:
请添加图片描述

感兴趣的同学也可以直接阅读 Webpack 仓库的如下文件,学习更多用例:

  • ConstDependency:一个简单示例,可学习 source 的更多操作方法;
  • HarmonyExportSpecifierDependency:一个较简单的示例,可学习 initFragments 数组的更多用法;
  • HarmonyImportDependency:一个较复杂但使用率极高的示例,可综合学习 sourceinitFragments 数组的用法。

收集运行时模块

为了正常、正确运行业务项目,Webpack 需要将开发者编写的业务代码以及支撑、调配这些业务代码的 运行时 一并打包到产物(bundle)中,以建筑作类比的话,业务代码相当于砖瓦水泥,是看得见摸得着能直接感知的逻辑;运行时相当于掩埋在砖瓦之下的钢筋地基,通常不需要关注,但决定了整座建筑的功能、质量。

大多数 Webpack 特性都需要特定钢筋地基才能跑起来,包括:异步加载、HMR、WASM、Module Federation 等。即使没有用到这些特性,仅仅是最简单的模块导入导出,也都需要生成若干模拟 CMD 模块化方案运行时代码,例如:

// a.js
export default 'a module';

// index.js
import name from './a'
console.log(name)

打包结果:
请添加图片描述

可以看出,整个 Bundle 被包裹在一个立即执行函数中,函数内部从上到下依次定义:

  • __webpack_modules__ 对象,包含了除入口外的所有模块,如示例中的 a.js 模块;
  • __webpack_module_cache__ 对象,用于存储被引用过的模块;
  • __webpack_require__ 函数,实现模块引用(require) 逻辑;
  • __webpack_require__.d ,工具函数,实现将模块导出的内容附加的模块对象上;
  • __webpack_require__.o ,工具函数,判断对象属性用;
  • __webpack_require__.r ,工具函数,在 ESM 模式下声明 ESM 模块标识;
  • 最后的 IIFE,对应 entry 模块即上述示例的 index.js ,用于启动整个应用。

这几个 __webpack_ 开头奇奇怪怪的函数可以统称为 Webpack 运行时代码,作用如前面所说的,是搭起整个业务项目的骨架,就上述简单示例所罗列出来的几个函数、对象而言,它们协作构建起一个简单的模块化体系,从而实现 ES Module 规范所声明的模块化特性。

上述函数、对象构成了 Webpack 运行时最基本的能力 —— 模块化,假如代码中用到更多 Webpack 特性,则会相应地注入更多运行时模块代码,例如:

  • 使用异步加载时,注入 __webpack_require__.e__webpack_require__.f 等模块;
  • 使用 HMR 时,注入 __webpack_require__.hmrFwebpack/runtime/hot 等模块。

那么,Webpack 是如何收集运行时依赖,并将之合并到最终产物中的呢?

收集运行时依赖:

早在「构建」阶段,Webpack 就已经开始在持续收集运行时依赖,例如,在一个非常简单的模块导入语句中:

import bar from './bar';

Webpack 在处理上述代码 AST 时,会相应生成多个依赖对象,比较重要的有:

  • HarmonyImportSideEffectDependency:主要的 Dependency 对象,Webpack 会为该对象创建相应的 NormalModule 实例,从而递归处理新模块代码;
  • HarmonyCompatibilityDependency:运行时模块依赖,对应的 Template.apply 函数会在生成代码时记录相应运行时需求。

本质上,这是一个基于静态代码分析的方式收集依赖的过程。当所有模块处理完毕,收集到所有运行时依赖,进入 codeGeneration 函数后,Webpack 会进一步将这些依赖对象挂载到 Chunk 中:
请添加图片描述

这个过程集中 compilation.processRuntimeRequirements 函数,函数中包含三次循环:

  • 第一次循环遍历所有 module,收集所有 module 的 runtime 依赖;
  • 第二次循环遍历所有 chunk,将 chunk 下所有 module 的 runtime 统一收录到 chunk 中;
  • 第三次循环遍历所有 runtime chunk,收集其对应的子 chunk 下所有 runtime 依赖,之后遍历所有依赖并发布 runtimeRequirementInTree 钩子,(主要是) RuntimePlugin 插件订阅该钩子并根据依赖类型创建对应的 RuntimeModule 子类实例。

第一次循环:收集模块依赖

在上述「模块转译主流程」中,我们聊到 Template.apply 函数可能修改模块的 runtimeRequirements 数组,最终形成如下结构:
在这里插入图片描述

这个过程相当于将模块的 Runtime Dependency 都转化为 __webpack_require__ 等枚举值,并调用 compilation.processRuntimeRequirements 进入第一重循环,将上述 runtimeRequirements 数组 挂载ChunkGraph 对象中。

第二次循环:整合 chunk 依赖

第一次循环针对 module 收集依赖,第二次循环则遍历 chunk 数组,收集将其对应所有 module 的 runtime 依赖,例如:
在这里插入图片描述

示例图中,module a 包含两个运行时依赖;module b 包含一个运行时依赖,则经过第二次循环整合后,对应的 chunk 会包含两个模块所包含的三个运行时依赖。

第三次循环:依赖标识转 RuntimeModule 对象

源码中,第三次循环的代码最少但逻辑最复杂,大致上执行三个操作:

  • 遍历所有 runtime chunk,收集其所有子 chunk 的 runtime 依赖;
  • 为该 runtime chunk 下的所有依赖发布 runtimeRequirementInTree 钩子;
  • RuntimePlugin 监听钩子,并根据 runtime 依赖的标识信息创建对应的 RuntimeModule 子类对象,并将对象加入到 ModuleDepedencyGraph /ChunkGraph 体系中管理。

至此,runtime 依赖完成了从 module 内容解析,到收集,到创建依赖对应的 Module 子类,再将 Module 加入到 ModuleDepedencyGraph /ChunkGraph 体系的全流程,业务代码及运行时代码对应的模块依赖关系图完全 ready,可以准备进入下一阶段 —— 合并最终产物。

合并最终产物

讲完单个模块转译以及运行时模块收集过程后,我们终于来到最后一步:
请添加图片描述
流程图中,compilation.codeGeneration 函数执行完毕 —— 也就是模块转译阶段完成后,模块的转译结果会一一保存到 compilation.codeGenerationResults 对象中,之后会启动一个新的执行流程 —— 模块合并打包

模块合并打包过程会将 chunk 对应的 module 及 runtimeModule 按规则塞进模板框架中,最终合并输出成完整的 bundle 文件,例如上例中:
请添加图片描述

示例右边 bundle 文件中,红框框出来的部分为用户代码文件及运行时模块生成的产物,其余部分撑起了一个 IIFE 形式的运行框架,即为模板框架,也就是:

(() => { // webpackBootstrap
    "use strict";
    var __webpack_modules__ = ({
        "module-a": ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
            // ! module 代码,
        }),
        "module-b": ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {
            // ! module 代码,
        })
    });
    // The module cache
    var __webpack_module_cache__ = {};
    // The require function
    function __webpack_require__(moduleId) {
        // ! webpack CMD 实现
    }
    /************************************************************************/
    // ! 各种 runtime
    /************************************************************************/
    var __webpack_exports__ = {};
    // This entry need to be wrapped in an IIFE because it need to be isolated against other modules in the chunk.
    (() => {
        // ! entry 模块
    })();
})();

捋一下这里的逻辑,运行框架包含如下关键部分:

  • 最外层是一个 IIFE 包裹;
  • 一个记录了除 entry 外的其它模块代码的 __webpack_modules__ 对象,对象的 key 为模块标志符;值为模块转译后的代码;
  • 一个极度简化的 CMD 实现: __webpack_require__ 函数;
  • 最后,一个包裹了 entry 代码的 IIFE 函数。

模块转译 是将 module 转译为可以在宿主环境如浏览器上运行的代码形式;收集运行时模块 负责决定整个 Bundle 需要的骨架代码;而 模块合并 操作则串联这些 modules ,使之整体符合开发预期,能够正常运行整个应用逻辑。接下来,我们揭晓这部分代码的生成原理。

模块合并主流程:

compilation.codeGeneration 执行完毕,即所有用户代码模块做完转译,运行时模块都收集完毕作后,seal 函数调用 compilation.createChunkAssets 函数,触发 renderManifest 钩子,JavascriptModulesPlugin 插件监听到这个钩子消息后开始组装 bundle,伪代码:

// Webpack 5
// lib/Compilation.js
class Compilation {
  seal() {
    // 先把所有模块的代码都转译,准备好
    this.codeGenerationResults = this.codeGeneration(this.modules);
    // 1. 调用 createChunkAssets
    this.createChunkAssets();
  }

  createChunkAssets() {
    // 遍历 chunks ,为每个 chunk 执行 render 操作
    for (
上一篇:xcode项目添加README.md文件并进行编辑


下一篇:边缘概率密度、条件概率密度、边缘分布函数、联合分布函数关系