Zynq系列FPGA实现SDI视频编解码+图像缩放,基于GTX高速接口,提供4套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 本博已有的 SDI 编解码方案
    • 本博已有的FPGA图像缩放方案
    • 本方案的无缩放应用
    • 本方案在Xilinx--Kintex系列FPGA上的应用
  • 3、详细设计方案
    • 设计原理框图
    • SDI 输入设备
    • Gv8601a 均衡器
    • GTX 解串与串化
    • SMPTE SD/HD/3G SDI IP核
    • BT1120转RGB
    • 纯Verilog图像缩放模块详解
    • 纯Verilog图像缩放模块使用
    • HLS图像缩放详解
    • 图像缓存
    • 视频读取控制
    • HDMI输出
    • RGB转BT1120
    • Gv8500 驱动器
    • SDI转HDMI盒子
    • 工程源码架构
  • 4、工程源码1详解-->3G-SDI转HDMI,纯Verilog图像缩放方案
  • 5、工程源码2详解-->3G-SDI转HD-SDI,纯Verilog图像缩放方案
  • 6、工程源码3详解-->3G-SDI转HDMI,HLS图像缩放方案
  • 7、工程源码4详解-->3G-SDI转HD-SDI,HLS图像缩放方案
  • 8、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 9、上板调试验证
    • 准备工作
    • 输出视频演示
  • 10、福利:工程代码的获取

Zynq系列FPGA实现SDI视频编解码+图像缩放,基于GTX高速接口,提供4套工程源码和技术支持

1、前言

目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。

工程概述

本设计基于Zynq系列的Zynq7100 FPGA开发板实现SDI视频编解码,输入源为一个3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;

本设计的目的是做图像缩放后输出解码的SDI视频,针对目前市面上的主流项目需求,本博设计了两种输出方式,一种是HDMI输出,另一种是3G-SDI输出,这两种方式都需要对解码BT1120视频进行转RGB和图像缓存操作和图像缩放操作;图像缩放方案也提供了两种,一种是纯verilog方案,另一种是HLS方案;本设计使用BT1120转RGB模块实现视频格式转换;使用图像缩放模块实现对输入视频的图像缩放操作;使用本博常用的FDMA或者Xilinx官方的VDMA图像缓存架构实现图像3帧缓存,缓存介质为板载的PS端DDR3;也可以不要缓存直接输出,这种方式的优点是延时很低,适用于低延时场景;图像从DDR3读出后,进入HDMI发送模块输出HDMI显示器,这是HDMI输出方式;或者经过RGB转BT1120模块实现视频格式转换,然后视频进入SMPTE SD/HD/3G SDI IP核,进行SDI视频编码操作并输出SDI视频,再经过FPGA内部的GTX高速资源,实现并行数据到高速串行的转换,本博称之为串化,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器,这是SDI输出方式;本博客提供4套工程源码,具体如下:
在这里插入图片描述
现对上述4套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过自研的FDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后读出视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示1280x720的有效图像;最后通过HDMI显示器显示图像;该工程需要缓存,需要运行Zynq软核;适用于SDI转HDMI场景;

工程源码2

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯verilog实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过自研的FDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后读出视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1280x720@60Hz,属于HD-SDI标准;最后使用SDI转HDMI盒子连接到HDMI显示器显示;该工程需要缓存,需要运行Zynq软核;适用于SDI转HDMI场景;

工程源码3

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;再经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯HLS实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过Xilinx官方的VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后读出视频送入RGB转HDMI模块,将RGB888视频转换为HDMI视频,输出分辨率为1920x1080@60Hz背景下叠加显示1280x720的有效图像;最后通过HDMI显示器显示图像;该工程需要缓存,需要运行Zynq软核;适用于SDI转HDMI场景;

工程源码4

开发板FPGA型号为Xilinx–>Xilinx-Zynq7100–xc7z100ffg900-2;输入视频为3G-SDI相机或者HDMI转3G-SDI盒子,输入分辨率为1920x1080@60Hz,输入视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ后送入FPGA;经过GTX将SDI视频解串为并行数据;再经过SMPTE SDI IP核将SDI解码BT1120数据;再经过BT1120转RGB模块将BT1120转换为RGB888视频;再经过自研的纯HLS实现的、支持任意比例缩放的图像缩放模块,将输入视频由1920x1080缩放为1280x720;再经过Xilinx官方的VDMA图像缓存方案将视频写入PS侧DDR3做三帧缓存;然后读出视频送RGB转BT1120模块,将RGB888视频转换为BT1120视频;再经过SMPTE SD/HD/3G SDI IP核,将BT1120视频编码为SDI视频;再经过FPGA内部的GTX高速资源,将SDI并行数据转换为高速串行信号;再经过板载的Gv8500芯片实现差分转单端和驱动增强后输出,输出分辨率为1280x720@60Hz,属于HD-SDI标准;最后使用SDI转HDMI盒子连接到HDMI显示器显示;该工程需要缓存,需要运行Zynq软核;适用于SDI转HDMI场景;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括****、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

本博已有的 SDI 编解码方案

我的博客主页开设有SDI视频专栏,里面全是FPGA编解码SDI的工程源码及博客介绍;既有基于GS2971/GS2972的SDI编解码,也有基于GTP/GTX资源的SDI编解码;既有HD-SDI、3G-SDI,也有6G-SDI、12G-SDI等;专栏地址链接如下:
点击直接前往

本博已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

本方案的无缩放应用

本方案有无缩放版本的应用,只做SDI视频编解码,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

本方案在Xilinx–Kintex系列FPGA上的应用

本方案在Xilinx–Kintex系列FPGA上的也有应用,之前专门写过一篇博客,博客地址链接如下:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:
在这里插入图片描述
注意!!!!
注意!!!!
紫色箭头:有缓存3G-SDI输出路径
绿色箭头:有缓存HDMI输出路径

SDI 输入设备

SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
在这里插入图片描述

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:
在这里插入图片描述

GTX 解串与串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTX起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:
在这里插入图片描述

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
在这里插入图片描述
SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,该IP接收来自于GTX的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

纯Verilog图像缩放模块详解

工程源码1、2的图像缩放模块使用纯Verilog方案,功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
在这里插入图片描述
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
在这里插入图片描述
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:

module helai_video_scale #(
	//---------------------------Parameters----------------------------------------
	parameter FIFO_TYPE          =	"xilinx",		// "xilinx" for xilinx-fifo ; "verilog" for verilog-fifo
	parameter DATA_WIDTH         =	8       ,		//Width of input/output data
	parameter CHANNELS           =	1       ,		//Number of channels of DATA_WIDTH, for color images
	parameter INPUT_X_RES_WIDTH  =	11      		//Widths of input/output resolution control signals	
)(
	input                            i_reset_n         ,    // 输入--低电平复位信号
	input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_width ,	// 输入视频--即缩放前视频的宽度
	input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_height,	// 输入视频--即缩放前视频的高度
	input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_width ,	// 输出视频--即缩后前视频的宽度
	input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_height,	// 输出视频--即缩后前视频的高度
	input                            i_src_video_pclk  ,	// 输入视频--即缩前视频的像素时钟
	input                            i_src_video_vs    ,	// 输入视频--即缩前视频的场同步信号,必须为高电平有效
	input                            i_src_video_de    ,	// 输入视频--即缩前视频的数据有效信号,必须为高电平有效
	input  [DATA_WIDTH*CHANNELS-1:0] i_src_video_pixel ,	// 输入视频--即缩前视频的像素数据
	input                            i_des_video_pclk  ,	// 输出视频--即缩后视频的像素时钟,一般为写入DDR缓存的时钟
	output                           o_des_video_vs    ,	// 输出视频--即缩后视频的场同步信号,高电平有效
	output                           o_des_video_de    ,	// 输出视频--即缩后视频的数据有效信号,高电平有效
	output [DATA_WIDTH*CHANNELS-1:0] o_des_video_pixel 		// 输出视频--即缩后视频的像素数据
);

FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;

2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

代码里的配置如下:
在这里插入图片描述

纯Verilog图像缩放模块使用

图像缩放模块使用非常简单,顶层代码里设置了四个参数,举例如下:
在这里插入图片描述
上图视频通过图像缩放模块但不进行缩放操作,旨在掌握图像缩放模块的用法;如果需要将图像放大到1080P,则修改为如下:
在这里插入图片描述
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;

HLS图像缩放详解

工程源码3、4的图像缩放采用HLS方案C++代码实现,并综合成RTL后封装为IP,可在vivado中调用该IP,关于这个方案详情,请参考我之前的博客,博客链接如下:
点击直接前往
该IP在vivado中的综合资源占用情况如下:
在这里插入图片描述
HLS图像缩放需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;HLS图像缩放在Block Design设计如下图:
在这里插入图片描述

图像缓存

图像缓存方案有两种;一是自研的FDMA图像缓存架构,二是Xilinx官方的的VDMA图像缓存架构;缓存介质为PS端DDR3;FDMA图像缓存架构由FDMA、FDMA控制器、缓存帧选择器构成;图像缓存使用Xilinx vivado的Block Design设计,如下图:
在这里插入图片描述
关于FDMA更详细的介绍,请参考我之前的博客,博文链接如下:
点击直接前往

VDMA图像缓存架构由VDMA、AXI互联IP构成;图像缓存使用Xilinx vivado的Block Design设计,如下图:
在这里插入图片描述

视频读取控制

FDMA图像缓存架构使用VGA时序模块完成视频读取控制,VGA时序模块负责产生VGA时序,他有两个作用,一是控制FDMA控制器从DDR3中读出缓存的视频,二是将同步后的VGA视频送入下一级模块,在HDMI输出方式下VGA时序模块的像素时钟由用户提供;在SDI输出方式下VGA时序模块的像素时钟由SMPTE SD/HD/3G SDI IP核的发送用户时钟提供,在不同的SDI模式下像素时钟不同,比如在3G-SDI模式下像素时钟为148.5M,在HD-SDI的720P@60Hz模式下像素时钟为74.25M;HDMI输出方式下的VGA时序模块代码架构如下:
在这里插入图片描述
SDI输出方式下的VGA时序模块代码架构如下:
在这里插入图片描述
VDMA图像缓存架构使用VTC+AXI4-Stream To Video Out架构完成视频读取控制,架构如下:
在这里插入图片描述

HDMI输出

在HDMI输出方式下,使用HDMI输出模块将RGB视频编码为HDMI差分信号,HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,代码如下:
在这里插入图片描述
关于这个模块,请参考我之前的博客,博客地址:点击直接前往

RGB转BT1120

在SDI输出方式下需要使用该模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:
在这里插入图片描述

SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程源码架构

本博客提供4套工程源码,以工程源码1为例,vivado Block Design设计如下,其他工程与之类似,Block Design设计为图像缓存架构的部分:
在这里插入图片描述
以工程源码1为例,使工程源码架构如下,其他工程与之类似:
在这里插入图片描述
FDMA图像缓存架构虽然不需要SDK配置,但FDMA的AXI4接口时钟由Zynq提供,所以需要运行SDK程序才能启动Zynq,从而为PL端逻辑提供时钟;由于不需要SDK配置,所以SDK软件代码就变得极度简单,只需运行一个“Hello World”即可,如下:
在这里插入图片描述
VDMA图像缓存架构则需要SDK配置,代码架构如下:
在这里插入图片描述

4、工程源码1详解–>3G-SDI转HDMI,纯Verilog图像缩放方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HDMI ,1920x1080@60Hz背景下叠加显示1280x720的有效图像;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:自研FDMA方案;
图像缓存介质:PS端DDR3;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程源码2详解–>3G-SDI转HD-SDI,纯Verilog图像缩放方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HD-SDI,分辨率1280x720@60Hz;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:自研FDMA方案;
图像缓存介质:PS端DDR3;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程源码3详解–>3G-SDI转HDMI,HLS图像缩放方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HDMI ,1920x1080@60Hz背景下叠加显示1280x720的有效图像;
图像缩放方案:自研纯HLS图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:官方VDMA方案;
图像缓存介质:PS端DDR3;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程源码4详解–>3G-SDI转HD-SDI,HLS图像缩放方案

开发板FPGA型号:Xilinx-Zynq7100–xc7z100ffg900-2;
开发环境:Vivado2019.1;
输入:3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
输出:HD-SDI,分辨率1280x720@60Hz;
图像缩放方案:自研纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720;
图像缓存方案:官方VDMA方案;
图像缓存介质:PS端DDR3;
工程作用:此工程目的是让读者掌握Zynq系列FPGA实现SDI转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

9、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板;
SDI摄像头或HDMI转SDI盒子;
SDI转HDMI盒子;
HDMI显示器;
我的开发板了连接如下:
在这里插入图片描述

输出视频演示

以工程3,3G-SDI输入图像缩放转HD-SDI输出为例,输出如下:

3G-SDI输入图像缩放转HD-SDI输出

10、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

上一篇:在pycharm里如何使用Jetbrains AI Assistant


下一篇:【高级篇】第7章 Elasticsearch 索引生命周期管理(ILM)