OpenCV如何判断一张图片是否有过高的明暗变化-代码实现

在C++中,你可以直接使用OpenCV库与C++标准库或Boost等数学库结合来计算图像的亮度标准差。虽然OpenCV的cv::Mat类本身不直接提供标准差计算函数,但你可以利用OpenCV的数据结构配合C++ STL中的算法来实现这一功能。以下是一个使用C++和OpenCV计算图像亮度标准差的例子:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

/**
 * 计算灰度图像的亮度标准差
 * @param imgGray 输入的灰度图像,必须是单通道的8位无符号整型图像。
 * @return 返回图像亮度的标准差。
 * 
 * 该函数接收一个灰度图像作为输入,首先验证图像的类型是否满足要求,
 * 然后使用OpenCV的meanStdDev函数计算图像亮度的均值和标准差。
 * 最后,函数返回计算得到的亮度标准差。
 */
double calculateBrightnessStdDev( const cv::Mat& imgGray )
{
    // 确保输入图像为单通道的8位无符号整型灰度图像
    CV_Assert( imgGray.type() == CV_8UC1 );

    // 计算图像的均值和标准差
    cv::Scalar mean, stddev;
    cv::meanStdDev( imgGray, mean, stddev );

    // 返回图像亮度的标准差
    return stddev.val[ 0 ];
}

int main( int argc, char** argv )
{
    // 读取图像并转换为灰度
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/fruit.jpg", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 计算并打印图像的亮度标准差
    double stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image fruit is: " << stdDev << std::endl;

    img    = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/black.jpg", cv::IMREAD_GRAYSCALE );
    stdDev = calculateBrightnessStdDev( img );
    std::cout << "The standard deviation of brightness in the image black is: " << stdDev << std::endl;

    return 0;
}


上一篇:Java学习日志26:Double.NEGATIVE_INFINITY与Double.MIN_VALUE的区别


下一篇:Mongo常用语法(java代码)