23种软件设计模式——工厂模式

工厂模式

工厂模式(Factory Pattern)是 Java 中最常用的设计模式之一,它提供了一种创建对象的方式,使得创建对象的过程与使用对象的过程分离。

工厂模式提供了一种创建对象的方式,而无需指定要创建的具体类。

通过使用工厂模式,可以将对象的创建逻辑封装在一个工厂类中,而不是在客户端代码中直接实例化对象,这样可以提高代码的可维护性和可扩展性。

工厂模式的类型

  1. 简单工厂模式(Simple Factory Pattern)

    • 简单工厂模式不是一个正式的设计模式,但它是工厂模式的基础。它使用一个单独的工厂类来创建不同的对象,根据传入的参数决定创建哪种类型的对象。
  2. 工厂方法模式(Factory Method Pattern)

    • 工厂方法模式定义了一个创建对象的接口,但由子类决定实例化哪个类。工厂方法将对象的创建延迟到子类。
  3. 抽象工厂模式(Abstract Factory Pattern)

    • 抽象工厂模式提供一个创建一系列相关或互相依赖对象的接口,而无需指定它们具体的类。

概要

意图

定义一个创建对象的接口,让其子类决定实例化哪一个具体的类。工厂模式使对象的创建过程延迟到子类。

主要解决

接口选择的问题。

何时使用

当我们需要在不同条件下创建不同实例时。

如何解决

通过让子类实现工厂接口,返回一个抽象的产品。

关键代码

对象的创建过程在子类中实现。

应用实例

  1. 汽车制造:你需要一辆汽车,只需从工厂提货,而不需要关心汽车的制造过程及其内部实现。
  2. Hibernate:更换数据库时,只需更改方言(Dialect)和数据库驱动(Driver),即可实现对不同数据库的切换。

优点

  1. 调用者只需要知道对象的名称即可创建对象。
  2. 扩展性高,如果需要增加新产品,只需扩展一个工厂类即可。
  3. 屏蔽了产品的具体实现,调用者只关心产品的接口。

缺点

每次增加一个产品时,都需要增加一个具体类和对应的工厂,使系统中类的数量成倍增加,增加了系统的复杂度和具体类的依赖。

使用场景

  1. 日志记录:日志可能记录到本地硬盘、系统事件、远程服务器等,用户可以选择记录日志的位置。
  2. 数据库访问:当用户不知道最终系统使用哪种数据库,或者数据库可能变化时。
  3. 连接服务器的框架设计:需要支持 "POP3"、"IMAP"、"HTTP" 三种协议,可以将这三种协议作为产品类,共同实现一个接口。

注意事项

工厂模式适用于生成复杂对象的场景。如果对象较为简单,通过 new 即可完成创建,则不必使用工厂模式。使用工厂模式会引入一个工厂类,增加系统复杂度。

结构

工厂模式包含以下几个主要角色:

  • 抽象产品(Abstract Product):定义了产品的共同接口或抽象类。它可以是具体产品类的父类或接口,规定了产品对象的共同方法。
  • 具体产品(Concrete Product):实现了抽象产品接口,定义了具体产品的特定行为和属性。
  • 抽象工厂(Abstract Factory):声明了创建产品的抽象方法,可以是接口或抽象类。它可以有多个方法用于创建不同类型的产品。
  • 具体工厂(Concrete Factory):实现了抽象工厂接口,负责实际创建具体产品的对象。

实现

我们将创建一个 Shape 接口和实现 Shape 接口的实体类。下一步是定义工厂类 ShapeFactory

FactoryPatternDemo 类使用 ShapeFactory 来获取 Shape 对象。它将向 ShapeFactory 传递信息(CIRCLE / RECTANGLE / SQUARE),以便获取它所需对象的类型。

工厂模式的 UML 图

步骤 1

创建一个接口:

Shape.java

public interface Shape { 

    void draw(); 
}

步骤 2

创建实现接口的实体类。

Rectangle.java

public class Rectangle implements Shape { 

    @Override 
    public void draw() { 
        System.out.println("Inside Rectangle::draw() method."); 
    } 
}

Square.java

public class Square implements Shape {
 
   @Override
   public void draw() {
      System.out.println("Inside Square::draw() method.");
   }
}

Circle.java

public class Circle implements Shape {
 
   @Override
   public void draw() {
      System.out.println("Inside Circle::draw() method.");
   }
}

步骤 3

创建一个工厂,生成基于给定信息的实体类的对象。

ShapeFactory.java

public class ShapeFactory {
    
   //使用 getShape 方法获取形状类型的对象
   public Shape getShape(String shapeType){
      if(shapeType == null){
         return null;
      }        
      if(shapeType.equalsIgnoreCase("CIRCLE")){
         return new Circle();
      } else if(shapeType.equalsIgnoreCase("RECTANGLE")){
         return new Rectangle();
      } else if(shapeType.equalsIgnoreCase("SQUARE")){
         return new Square();
      }
      return null;
   }
}

步骤 4

使用该工厂,通过传递类型信息来获取实体类的对象。

FactoryPatternDemo.java

public class FactoryPatternDemo {
 
   public static void main(String[] args) {
      ShapeFactory shapeFactory = new ShapeFactory();
 
      //获取 Circle 的对象,并调用它的 draw 方法
      Shape shape1 = shapeFactory.getShape("CIRCLE");
 
      //调用 Circle 的 draw 方法
      shape1.draw();
 
      //获取 Rectangle 的对象,并调用它的 draw 方法
      Shape shape2 = shapeFactory.getShape("RECTANGLE");
 
      //调用 Rectangle 的 draw 方法
      shape2.draw();
 
      //获取 Square 的对象,并调用它的 draw 方法
      Shape shape3 = shapeFactory.getShape("SQUARE");
 
      //调用 Square 的 draw 方法
      shape3.draw();
   }
}

步骤 5

执行程序,输出结果:

Inside Circle::draw() method.
Inside Rectangle::draw() method.
Inside Square::draw() method.
上一篇:链式法则:神经网络前向与反向传播的基石


下一篇:Jetson Orin Nano v6.0 + tensorflow2.15.0+nv24.05 GPU版本安装-3. 测试