Spark 是基于内存计算的分布式计算框架,可以在内存中高效地执行数据操作,因此通常比 Hive 更快。Spark 会尽可能将数据加载到内存中,并在内存中执行多个操作,从而避免了频繁的磁盘读写,提高了处理速度。在处理大规模数据时,由于内存资源的限制,Spark 会将部分数据写入磁盘进行临时存储或分片处理。
Hive 是基于 Hadoop 的数据仓库工具,它将 Hive SQL 查询转换为 MapReduce 作业来执行。由于 MapReduce 的特性,Hive 在处理大规模数据时可能会出现较高的延迟,因为它需要频繁地将数据写入和读取磁盘,Shuffle 操作会导致花费的时间代价比较大。
在数据处理方式方面,Spark 胜。