机器学习-04-分类算法-01决策树

总结

本系列是机器学习课程的系列课程,主要介绍机器学习中分类算法,本篇为分类算法开篇与决策树部分。

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合
+算法评估+持续调优+工程化接口实现

机器学习定义

关于机器学习的定义,Tom Michael Mitchell的这段话被广泛引用:
对于某类任务T性能度量P,如果一个计算机程序在T上其性能P随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习
在这里插入图片描述

分类方法的定义

在这里插入图片描述
在这里插入图片描述

决策树算法

什么是好瓜

在这里插入图片描述
在这里插入图片描述

熵的概念来源于热力学。在热力学中熵的定义是系统可能状态数的对数值,称为热熵。它是用来表达分子状态杂乱程度的一个物理量。热力学指出,对任何已知孤立的物理系统的演化,热熵只能增加,不能减少。
信息的基本作用就是消除人们对事物了解的不确定性。美国信息论创始人香农发现任何信息都存在冗余,冗余的大小与信息的每一个符号出现的概率和理想的形态有关。信息熵表示的是信息的混乱程度。当均匀分布时,信息熵最大。当熵除一个值之外,其他值均为0,信息熵最小。
和热力学中的熵相反的是,信息熵只能减少,不能增加。
所以热熵和信息熵互为负量。且已证明,任何系统要获得信息必须要增加热熵来补偿,即两者在数量上是有联系的。

信息熵信息量的量化过程:

例如:
事件A:明天的太阳会从东边升起。
事件B:虽然明天的太阳还是从东边升起,但是明天要下雪。
信息量没有量化

信息量的表达式应该满足的条件:

(1)信息量和事件发生的概率有关,当事件发生的概率越低或者越高,传递的信息量越大;
(2)信息量应当是非负的,必然发生的信息量为0;
(3)两个事件的信息量可以相加,并且两个独立事件的联合信息量应该是他们各自信息量的和;

信息熵的量化过程:

在这里插入图片描述在这里插入图片描述

熵随着概率的变化为:
在这里插入图片描述

信息增益的计算

信息增益=信息熵-条件熵
g(D,A)=H(D) –H(D|A)

条件熵是另一个变量Y熵对X(条件)的期望。
在这里插入图片描述
在这里插入图片描述

信息增益(Information Gain):熵A-条件熵B,是信息量的差值。也就是说,一开始是A,用了条件后变成了B,则条件引起的变化是A-B,即信息增益。好的条件就是信息增益越大越好。因此我们在树分叉的时候,应优先使用信息增益最大的属性,这样降低了复杂度,也简化了后边的逻辑。

比如下面数据:
在这里插入图片描述

初始的信息熵H(A)为:

一共12人,嫁的有6人,不嫁的有6人
H(A) = -1/2 * (log1/2) -1/2 * (log1/2)=-log1/2

可以得出,

当已知不帅的条件下,满足条件的只有4个数据了,这四个数据中,不嫁的个数为1个,占1/4,嫁的个数为3个,占3/4
那么此时的
H(Y|X = 不帅) = -1/4log1/4 - 3/4log3/4
p(X = 不帅) = 4/12 = 1/3

同理我们可以得到:

当已知帅的条件下,满足条件的有8个数据了,这八个数据中,不嫁的个数为5个,占5/8
,嫁的个数为3个,占3/8
那么此时的
H(Y|X = 帅) = -5/8log5/8 - 3/8log3/8
p(X = 帅) = 8/12 = 2/3

计算结果

有了上面的铺垫之后,我们终于可以计算我们的条件熵了,我们现在需要求:
H(Y|X = 长相)
也就是说,我们想要求出当已知长相的条件下的条件熵。
根据公式我们可以知道,长相可以取帅与不帅俩种,然后将上面已经求得的答案带入即可求出条件熵!
H(Y|X=长相)
= p(X =帅)*H(Y|X=帅)+p(X =不帅)*H(Y|X=不帅)
=2/3 * (-5/8log5/8 - 3/8log3/8) + 1/3 *(-1/4log1/4 - 3/4log3/4)
=

此时的信息增益计算为:

g(D,A)
=H(D) –H(D|A)
= -log1/2 - (2/3 * (-5/8log5/8 - 3/8log3/8) + 1/3 *(-1/4log1/4 - 3/4log3/4))

其实条件熵意思是按一个新的变量的每个值对原变量进行分类,比如上面这个题把嫁与不嫁按帅,不帅分成了俩类。
然后在每一个小类里面,都计算一个小熵,然后每一个小熵乘以各个类别的概率,然后求和。
我们用另一个变量对原变量分类后,原变量的不确定性就会减小了,因为新增了X的信息,可以感受一下。不确定程度减少了多少就是信息的增益。

再举一个例子
在这里插入图片描述
在这里插入图片描述

如果采用苹果编号为条件,会发现,此时信息增益最大,因为编号1的叶子节点只有yes,此时的信息熵为0,最后会导致,信息增益会选择苹果编号为分割条件。

举例:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

信息增益率的计算

在这里插入图片描述

基尼系数的计算

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

ID3 C4.5 CART算法比较

决策树——ID3和C4.5(理论+图解+公式推导)
策略产品经理必读系列—第七讲ID3、C4.5和CART算法详解
决策树(一)| 基础决策树 ID3、C4.5、CART 核心概要

确定方向过程

针对完全没有基础的同学们
1.确定机器学习的应用领域有哪些
2.查找机器学习的算法应用有哪些
3.确定想要研究的领域极其对应的算法
4.通过招聘网站和论文等确定具体的技术
5.了解业务流程,查找数据
6.复现经典算法
7.持续优化,并尝试与对应企业人员沟通心得
8.企业给出反馈

上一篇:测试人员Bug书写规范


下一篇:React Router 中的路由导航方法:push 和 replace 详解