C语言单向链表的经典算法

1.分割链表
2.移除链表元素 
3.反转链表
4.合并两个有序链表
5.链表的中间结点
6.环形链表的约瑟夫问题

1.分割链表:

1.思路:创建新链表,小链表和大链表。如图

代码如下

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */

typedef struct ListNode ListNode;
struct ListNode* partition(struct ListNode* head, int x){
if(head == NULL)
return head;
ListNode* lessHead, *lessTail;
ListNode* greaterHead, *greaterTail;
lessHead = lessTail = (ListNode*)malloc(sizeof(ListNode));
greaterHead = greaterTail = (ListNode*)malloc(sizeof(ListNode));
ListNode* pcur = head;
while(pcur)
{
    if(pcur->val < x)
    {//尾插到小链表中
        lessTail->next = pcur;
        lessTail = lessTail->next;

    }else{
    //尾插到大链表中
    greaterTail->next = pcur;
    greaterTail = greaterTail->next;
    }
    pcur = pcur->next;
}
//修改大链表的指针指向
greaterTail->next = NULL;//不修改会出现死循环
//小链表的尾节点和大链表第一个有效节点连接
lessTail->next = greaterHead->next;
ListNode* ret = lessHead->next;
free(greaterHead);
free(lessHead);
greaterHead = lessHead = NULL;
return ret;
}

2.移除链表元素 :思路:链表中不为val则尾插到新链表中。(最后新链表应该置为空)指针pcur往后移动pphead不动。刚开始新链表为空,注意每次尾插都要,把该节点定位尾节点。

 

代码:

#define _CRT_SECURE_NO_WARNINGS 1
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
typedef struct  ListNode ListNode;
struct ListNode* removeElements(struct ListNode* head, int val) {
    ListNode* newhead = NULL;
    ListNode* newtail = NULL;
    //遍历原链表
    ListNode* pcur = head;
    while (pcur)
    {
        if (pcur->val != val)
        {
            //创建新链表
            if (newhead == NULL)
            {
                //新链表为空
                newhead = newtail = pcur;
            }
            else
            {
                //新链表不为空相当于尾插
                newtail->next = pcur;
                newtail = newtail->next;
            }
        }
        pcur = pcur->next;
    }
    if (newtail)
        newtail->next = NULL;

    return newhead;
}

3.反转链表:思路:创建三个指针完成原链表的翻转

看这个视频:

反转链表

代码:

#define _CRT_SECURE_NO_WARNINGS 1
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
typedef struct ListNode ListNode;
struct ListNode* reverseList(struct ListNode* head) {
    if (head == NULL)
    {
        return head;
    }
    ListNode* n1, * n2, * n3;
    n2 = head;
    n1 = NULL;
    n3 = n2->next;
    while (n2)
    {
        n2->next = n1;
        n1 = n2;
        n2 = n3;
        if (n3)
            n3 = n3->next;
    }
    return n1;
}

4.合并两个有序链表:创建新的空链表,遍历原链表,将节点小的链表拿到新链表中尾插。(遍历结果有两种情况,l1为空或者l2为空)。

 

代码:

#define _CRT_SECURE_NO_WARNINGS 1
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
typedef struct ListNode ListNode;
struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2) {
    //判空
    if (list1 == NULL)
    {
        return list2;
    }
    if (list2 == NULL)
    {
        return list1;
    }
    ListNode* l1 = list1;
    ListNode* l2 = list2;
    ListNode* newtail, * newhead;
    newhead = newtail = (ListNode*)malloc(sizeof(ListNode));
    while (l1 && l2)
    {
        if (l1->val < l2->val)
        {
            //l1拿下来尾插
            newtail->next = l1;
            newtail = newtail->next;
            l1 = l1->next;
        }
        else {
            //l2尾插
            newtail->next = l2;
            newtail = newtail->next;
            l2 = l2->next;
        }
    }
    //跳出循环时有两种情况,l1先为空 或 l2先为空
    if (l2)
    {
        newtail->next = l2;
    }
    if (l1)
    {
        newtail->next = l1;
    }

    ListNode* ret = newhead->next;
    free(newhead);
    newhead = NULL;
    return ret;
}

5.链表的中间结点:思路:这里可以定义两个快慢指针,快指针 一次走两步,慢指针一次走两步这里也要注意条件不能交换位置两种情况都保证的情况下先满足小的,链表为偶数时fast最后一次会直接走到空,下一步就会报错

代码:

#define _CRT_SECURE_NO_WARNINGS 1
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */
typedef struct ListNode ListNode;
struct ListNode* middleNode(struct ListNode* head) {
    ListNode* slow = head;
    ListNode* fast = head;
    while (fast && fast->next)
    {
        slow = slow->next;
        fast = fast->next->next;
    }
    return slow;
}

6.环形链表的约瑟夫问题

1.关于这个算法题的小故事:著名的Josephus问题 据说著名犹太 Josephus有过以下的故事:在罗⻢⼈占领乔塔帕特后,39 个犹太⼈与 Josephus及他的朋友躲到⼀个洞中,39个犹太⼈决定宁愿死也不要被⼈抓到,于是决定了⼀个⾃杀 ⽅式,41个⼈排成⼀个圆圈,由第1个⼈开始报数,每报数到第3⼈该⼈就必须⾃杀,然后再由下⼀ 个重新报数,直到所有⼈都⾃杀⾝亡为⽌。历史学家 然⽽Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与⾃⼰安排在 第16个与第31个位置,于是逃过了这场死亡游戏。

2.思路:第一步创建环形链表(创建之前要先创建一个节点,可以用函数封装起来),第二步计数(又分为销毁链表和不销毁链表)下面我画了图以视频形式呈现

环形链表的约瑟夫问题

 

 

 

 

 

 

 

 

 

 

 

上一篇:常见分类算法详解


下一篇:6-pytorch - 网络的保存和提取