在为要素中的字符串列编制索引时,我对PySpark有一个奇怪的问题.这是我的tmp.csv文件:
x0,x1,x2,x3
asd2s,1e1e,1.1,0
asd2s,1e1e,0.1,0
,1e3e,1.2,0
bd34t,1e1e,5.1,1
asd2s,1e3e,0.2,0
bd34t,1e2e,4.3,1
我在’x0’中有一个缺失值.
首先,我正在使用pyspark_csv:https://github.com/seahboonsiew/pyspark-csv将csv文件中的功能读入DataFrame
然后使用StringIndexer索引x0:
import pyspark_csv as pycsv
from pyspark.ml.feature import StringIndexer
sc.addPyFile('pyspark_csv.py')
features = pycsv.csvToDataFrame(sqlCtx, sc.textFile('tmp.csv'))
indexer = StringIndexer(inputCol='x0', outputCol='x0_idx' )
ind = indexer.fit(features).transform(features)
print ind.collect()
当调用”ind.collect()”时,Spark会抛出java.lang.NullPointerException.一切都适用于完整的数据集,例如,对于’x1′.
有没有人知道造成这种情况的原因以及如何解决这个问题?
提前致谢!
谢尔盖
更新:
我使用Spark 1.5.1.确切的错误:
File "/spark/spark-1.4.1-bin-hadoop2.6/python/pyspark/sql/dataframe.py", line 258, in show
print(self._jdf.showString(n))
File "/spark/spark-1.4.1-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/spark/spark-1.4.1-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o444.showString.
: java.lang.NullPointerException
at org.apache.spark.sql.types.Metadata$.org$apache$spark$sql$types$Metadata$$hash(Metadata.scala:208)
at org.apache.spark.sql.types.Metadata$$anonfun$org$apache$spark$sql$types$Metadata$$hash$2.apply(Metadata.scala:196)
at org.apache.spark.sql.types.Metadata$$anonfun$org$apache$spark$sql$types$Metadata$$hash$2.apply(Metadata.scala:196)
... etc
我试图在不读取csv文件的情况下创建相同的DataFrame,
df = sqlContext.createDataFrame(
[('asd2s','1e1e',1.1,0), ('asd2s','1e1e',0.1,0),
(None,'1e3e',1.2,0), ('bd34t','1e1e',5.1,1),
('asd2s','1e3e',0.2,0), ('bd34t','1e2e',4.3,1)],
['x0','x1','x2','x3'])
它给出了同样的错误.有点不同的例子很好,
df = sqlContext.createDataFrame(
[(0, None, 1.2), (1, '06330986ed', 2.3),
(2, 'b7584c2d52', 2.5), (3, None, .8),
(4, 'bd17e19b3a', None), (5, '51b5c0f2af', 0.1)],
['id', 'x0', 'num'])
// after indexing x0
+---+----------+----+------+
| id| x0| num|x0_idx|
+---+----------+----+------+
| 0| null| 1.2| 0.0|
| 1|06330986ed| 2.3| 2.0|
| 2|b7584c2d52| 2.5| 4.0|
| 3| null| 0.8| 0.0|
| 4|bd17e19b3a|null| 1.0|
| 5|51b5c0f2af| 0.1| 3.0|
+---+----------+----+------+
更新2:
我刚刚在Scala中发现了同样的问题,所以我猜这只是Spark bug而不是PySpark.特别是数据框架
val df = sqlContext.createDataFrame(
Seq(("asd2s","1e1e",1.1,0), ("asd2s","1e1e",0.1,0),
(null,"1e3e",1.2,0), ("bd34t","1e1e",5.1,1),
("asd2s","1e3e",0.2,0), ("bd34t","1e2e",4.3,1))
).toDF("x0","x1","x2","x3")
索引’x0’功能时抛出java.lang.NullPointerException.此外,当在下面的数据帧中索引’x0’时
val df = sqlContext.createDataFrame(
Seq((0, null, 1.2), (1, "b", 2.3),
(2, "c", 2.5), (3, "a", 0.8),
(4, "a", null), (5, "c", 0.1))
).toDF("id", "x0", "num")
我有’java.lang.UnsupportedOperationException:不支持类型Any的模式’,这是由第5个向量中缺少’num’值引起的.如果用数字替换它,一切都很好,甚至在第一个向量中缺少值.
我也尝试过旧版本的Spark(1.4.1),结果是一样的.
解决方法:
它看起来像你正在使用的模块将空字符串转换为空值,并且它在某些时候与下游处理混乱.乍一看it looks like a PySpark bug.
怎么解决?一个简单的解决方法是在索引之前删除空值:
features.na.drop()
或者用一些占位符替换null:
from pyspark.sql.functions import col, when
features.withColumn(
"x0", when(col("x0").isNull(), "__SOME_PLACEHOLDER__").otherwise(col("x0")))
此外,您可以使用spark-csv
.它是高效的,经过测试,并且奖励不会将空字符串转换为空值.
features = (sqlContext.read
.format('com.databricks.spark.csv')
.option("inferSchema", "true")
.option("header", "true")
.load("tmp.csv"))