Description
鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果i时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为(i,j)的网格移向(i-1, j),(i+1, j),(i,j-1),(i,j+1)四个网格,机器人不能走出整个n*n的网格。游戏开始时,你可以*选定机器人的初始位置。现在你知道在一段时间内,鼹鼠出现的时间和地点,希望你编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。
Input
第一行为n(n<=1000), m(m<=10000),其中m表示在这一段时间内出现的鼹鼠的个数,接下来的m行每行有三个数据time,x,y表示有一只鼹鼠在游戏开始后time个时刻,在第x行第y个网格里出现了一只鼹鼠。Time按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。
Output
仅包含一个正整数,表示被打死鼹鼠的最大数目
Sample Input
2 2
1 1 1
2 2 2
1 1 1
2 2 2
Sample Output
1
蛮水的一个DP……有种最长上升子序列的感觉orz
我觉得只要最长上升子序列做过的话这个题的思路就很好想了
毕竟题目都说了已经按出现时间排好序了
我觉得只要最长上升子序列做过的话这个题的思路就很好想了
毕竟题目都说了已经按出现时间排好序了
#include<iostream>
#include<cstdlib>
#include<cstdio>
using namespace std;
int maxt,n,m,ans,x[],y[],t[],f[];
int main()
{
int i,j;
scanf("%d%d",&n,&m);
for (i=; i<=m; ++i)
scanf("%d%d%d",&t[i],&x[i],&y[i]);
for (i=; i<=m; ++i)
{
f[i]=;//f表示到第i只鼹鼠出现时最多可以打到多少只
for (j=i-; j>=; --j)
if (t[i]-t[j]>=abs(x[i]-x[j])+abs(y[i]-y[j]))//如果时间足够,能从j点移动到当前点
f[i]=max(f[i],f[j]+);
ans=max(ans,f[i]);
}
printf("%d",ans);
}