http://cojs.tk/cogs/problem/problem.php?pid=896
我的计算几何入门题。。。
看了看白书的计算几何部分,,恩好嘛。。
乃们都用向量!!!!
干嘛非要将2个点确定一条线变成一个点从原点o出发的射线!!!!
这就是所谓的玩概念吗
然后用所谓的向量加减,是这些向量起点相同,然后就变成了原点o出发的射线!!!
然后你们还在玩概念!我跪了。
(以上纯属蒟蒻吐槽)
好吧,计算几何非常有用的。。简化了不少操作。
这里还有啥点积啥叉积。点积就是同一起点的向量(终点)的 x坐标乘积+y坐标乘积,,,,叉积就是同一起点的向量(终点)的 x坐标和y坐标交叉乘起来的差。。
噗。。真帅!!
计算几何好神奇啊!!
简化了好多操作!!!
我发现我爱上他了!!
(吐槽完毕)
会到此题。。。裸的凸包。。
白书上有,我就不说了,,就是扫过去判断叉积正负,也就是说在向量左边还是右边,在左边就继续,在右边就退栈重来。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } using namespace std; void setio(string name){
string in = name + ".in", out = name + ".out";
ios::sync_with_stdio(false);
freopen(in.c_str(), "r", stdin);
freopen(out.c_str(), "w", stdout);
} const int N=10005;
struct node {
double x, y;
node(const double &_x=0, const double &_y=0) : x(_x), y(_y) {}
}st[N], p[N];
int cnt, n;
node operator - (const node &a, const node &b) { return node(a.x-b.x, a.y-b.y); }
double cross(const node &a, const node &b) { return a.x*b.y-b.x*a.y; }
const bool cmp(const node &a, const node &b) { return (a.x==b.x)?(a.y<b.y):(a.x<b.x); }
const double dis(const node &a, const node &b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); }
void tubao() {
sort(p, p+n, cmp);
cnt=0;
rep(i, n) {
while(cnt>1 && cross(st[cnt-1]-st[cnt-2], p[i]-st[cnt-2])<=0) --cnt;
st[cnt++]=p[i];
}
int k=cnt;
for3(i, n-2, 0) {
while(cnt>k && cross(st[cnt-1]-st[cnt-2], p[i]-st[cnt-2])<=0) --cnt;
st[cnt++]=p[i];
}
if(n>1) --cnt;
} int main() {
setio("fc");
scanf("%d", &n);
rep(i, n) scanf("%lf%lf", &p[i].x, &p[i].y);
tubao();
double ans=0;
for1(i, 0, cnt-1) ans+=dis(st[i], st[i+1]);
printf("%.2lf\n", ans);
return 0;
}
描述
农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏。他建造的围栏必须包括他的奶牛喜欢吃草的所有地点。对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度。
PROGRAM NAME: fc
INPUT FORMAT(file fc.in)
输入数据的第一行包括一个整数 N。N(0 <= N <= 10,000)表示农夫约翰想要围住的放牧点的数目。接下来 N 行,每行由两个实数组成,Xi 和 Yi,对应平面上的放牧点坐标(-1,000,000 <= Xi,Yi <= 1,000,000)。数字用小数表示。
OUTPUT FORMAT(file fc.out)
输出必须包括一个实数,表示必须的围栏的长度。答案保留两位小数。
SAMPLE INPUT (file fc.in)
4
4 8
4 12
5 9.3
7 8
SAMPLE OUTPUT (file fc.out)
12.00