使用对比
HashMap非线程安全,在多线程并发的情况下add/get可能引入死循环,导致cpu利用率趋近于100%
解决方案有HashTable或者Collections.synchronizedMap(map)
这两个解决方案底层对读写方法进行加锁
此外还有一种结构:ConcurrentHashMap也是线程安全的
分别使用HashTable,Collection.synchornizedMap(map),ConcurrentHashMap这三个集合,循环100次创建50个线程往这三个集合中同时添加5000个元素,获取其中的元素, 分析使用不同集合put get的效率
package thread;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CountDownLatch;
class PutThread extends Thread{
private Map<String, Integer> map;
private CountDownLatch countDownLatch;
private String key = this.getId()+"";
public PutThread(Map<String, Integer> map, CountDownLatch countDownLatch){
this.map = map;
this.countDownLatch = countDownLatch;
}
public void run(){
for(int i=0; i<5000; i++){
map.put(key, i);
}
countDownLatch.countDown(); //-1
}
}
class GetThread extends Thread{
private Map<String, Integer> map;
private CountDownLatch countDownLatch;
private String key = this.getId()+"";
public GetThread(Map<String, Integer> map, CountDownLatch countDownLatch){
this.map = map;
this.countDownLatch = countDownLatch;
}
public void run(){
for(int i=0; i<5000; i++){
map.get(key);
}
countDownLatch.countDown();
}
}
class TestDemo14 {
private static final int THREADNUM = 50;
public static long put(Map<String, Integer> map){
long start = System.currentTimeMillis();
//起50个线程添加5000个元素
CountDownLatch countDownLatch = new CountDownLatch(THREADNUM);
for(int i=0; i < THREADNUM; i++){
new PutThread(map, countDownLatch).start();
}
try {
countDownLatch.await(); //计数器为0 打破阻塞
} catch (InterruptedException e) {
e.printStackTrace();
}
return System.currentTimeMillis()-start;
}
public static long get(Map<String, Integer> map){
//起50个线程获取5000个元素
long start = System.currentTimeMillis();
CountDownLatch countDownLatch = new CountDownLatch(THREADNUM);
for(int i=0; i<THREADNUM; i++){
new GetThread(map, countDownLatch).start();
}
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
return System.currentTimeMillis()-start;
}
public static void main(String[] args) {
Map<String, Integer> hashmapSync = Collections.synchronizedMap(new HashMap<String, Integer>());
Map<String, Integer> hashtable = new Hashtable<>();
Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
long totalA = 0L; //Collections.synchronizedMap
long totalB = 0L; //HashTable
long totalC = 0L; //ConcurrentHashMap
//计算put方法的总耗时
for(int i = 0; i < 100; i++){
totalA += put(hashmapSync);
totalB += put(hashtable);
totalC += put(concurrentMap);
}
System.out.println("put time Collections.synchronizedMap = " +totalA+".ms");
System.out.println("put time Hashtable = " +totalB+".ms");
System.out.println("put time ConcurrentHashMap = " +totalC+".ms");
totalA = 0L; //Collections.synchronizedMap
totalB = 0L; //HashTable
totalC = 0L; //ConcurrentHashMap
//计算get方法的总耗时
for(int i=0; i<100; i++){
totalA += get(hashmapSync);
totalB += get(hashtable);
totalC += get(concurrentMap);
}
System.out.println("get time Collections.synchronizedMap = " +totalA+".ms");
System.out.println("get time Hashtable = " +totalB+".ms");
System.out.println("get time ConcurrentHashMap = " +totalC+".ms");
}
}
源码分析
1、类的继承关系
2、类的属性
sizeCtl: table的初始化和扩容需要用到的变量
-1 代表table正在初始化
N 代表N-1个线程在进行扩容操作
其他情况:
1)如果table未初始化,table表示初始化的大小
2)如果table初始化完成,表示table的容量,默认0.75*table.size
初始化操作在第一次put完成
concurrencyLevel在jdk1.8的意义改变,并不代表当前所允许的并发数,只是 用来sizeCtl大小,在jdk1.8的并发控制针对具体的桶而言,所以有多少个桶就有 多少个并发数
3) 构造函数 只是sizeCtl初始化,表示table初始化大小
final V putVal(K key, V value, boolean onlyIfAbsent) {
* //ConcurrentHashMap中键和值不能为空
* if (key == null || value == null) throw new NullPointerException();
* int hash = spread(key.hashCode());
* int binCount = 0;
* for (Node<K,V>[] tab = table;;) {
* //无限循环 (多线程环境)
* Node<K,V> f; int n, i, fh;
* if (tab == null || (n = tab.length) == 0)
* //表为空或者表长度为0
* //初始化表
* tab = initTable();
* else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
* //表不为空,该桶位置为空时
* if (casTabAt(tab, i, null,
* new Node<K,V>(hash, key, value, null)))
* //CAS方式插入一个新的Node
* break; // no lock when adding to empty bin
* }
* else if ((fh = f.hash) == MOVED)
* //该节点的hash值为Moved,说明当前节点是ForwardingNode,意味着有其他线程
* //在进行扩容,则一起进行扩容操作
* tab = helpTransfer(tab, f);
* else {
* V oldVal = null;
* synchronized (f) {
* //加锁同步,针对首个节点进行加锁操作
* if (tabAt(tab, i) == f) {
* //找到table表下标为i的节点
* if (fh >= 0) {
* //正常节点
* binCount = 1;
* for (Node<K,V> e = f;; ++binCount) {
* //无线循环 相当于自旋
* K ek;
* if (e.hash == hash &&
* ((ek = e.key) == key ||
* (ek != null && key.equals(ek)))) {
* oldVal = e.val;
* if (!onlyIfAbsent)
* e.val = value;
* break;
* }
* Node<K,V> pred = e;
* if ((e = e.next) == null) {
* //遍历至最后一个节点
* pred.next = new Node<K,V>(hash, key,
* value, null);
* //尾插法插入一个新节点
* break;
* }
* }
* }
* else if (f instanceof TreeBin) {
* //判断节点类型是否是红黑树类型
* Node<K,V> p;
* binCount = 2;
* if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
* value)) != null) {
* oldVal = p.val;
* if (!onlyIfAbsent)
* p.val = value;
* }
* }
* }
* }
* if (binCount != 0) {
* if (binCount >= TREEIFY_THRESHOLD)
* treeifyBin(tab, i);
* if (oldVal != null)
* return oldVal;
* break;
* }
* }
* }
* //增加binCount容量,检查当前容量是否需要进行扩容
* addCount(1L, binCount);
* return null;
* }