前言:多个线程同时查询一张表,最后汇总查询结果返回,那么就存在一个问题,如何判断多个线程是否全部已经处理完成。CountDownLatch 能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行。它相当于是一个计数器,这个计数器的初始值就是线程的数量,每当一个任务完成后,计数器的值就会减一,当计数器的值为 0 时,表示所有的线程都已经完成任务了,然后在 CountDownLatch 上等待的线程就可以恢复执行接下来的任务。
一、CountDownLatch简介
1、CountDownLatch概念
CountDownLatch
是多线程控制的一种工具,它被称为门阀
、计数器
或者闭锁
。这个工具经常用来用来协调多个线程之间的同步,使一个线程等待其他线程各自执行完毕后再执行。CountDownLatch是在Java1.5被引入,存在于java.util.cucurrent包下。跟它一起被引入的工具类还有CyclicBarrier、Semaphore、ConcurrentHashMap和BlockingQueue。
CountDownLatch是通过一个计数器来实现的,计数器的初始值是线程的数量。每当一个线程执行完毕后,计数器的值就-1,当计数器的值为0时,表示所有线程都执行完毕,然后在闭锁上等待的线程就可以恢复工作了。
Java的concurrent包里面的CountDownLatch其实可以把它看作一个计数器,只不过这个计数器的操作是原子操作,同时只能有一个线程去操作这个计数器,也就是同时只能有一个线程去减这个计数器里面的值。你可以向CountDownLatch对象设置一个初始的数字作为计数值,任何调用这个对象上的await()方法都会阻塞,直到这个计数器的计数值被其他的线程减为0为止。
2、CountDownLatch类源码
countDownLatch类中只提供了一个构造器:
//参数count为计数值
public CountDownLatch(int count) { };
类中有三个方法是最重要的:
//调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行
public void await() throws InterruptedException { };
//和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行
public boolean await(long timeout, TimeUnit unit) throws InterruptedException { };
//将count值减1
public void countDown() { };
CountDownLatch的一个非常典型的应用场景是:有一个任务想要往下执行,但必须要等到其他的任务执行完毕后才可以继续往下执行。假如我们这个想要继续往下执行的任务调用一个CountDownLatch对象的await()方法,其他的任务执行完自己的任务后调用同一个CountDownLatch对象上的countDown()方法,这个调用await()方法的任务将一直阻塞等待,直到这个CountDownLatch对象的计数值减到0为止。
举个例子,有三个工人在为老板干活,这个老板有一个习惯,就是当三个工人把一天的活都干完了的时候,他就来检查所有工人所干的活。记住这个条件:三个工人先全部干完活,老板才检查。所以在这里用Java代码设计两个类,Worker代表工人,Boss代表老板,具体的代码实现如下:
Java代码 1
package org.zapldy.concurrent;
import java.util.Random;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
public class Worker implements Runnable{
private CountDownLatch downLatch;
private String name;
public Worker(CountDownLatch downLatch, String name){
this.downLatch = downLatch;
this.name = name;
}
public void run() {
this.doWork();
try{
TimeUnit.SECONDS.sleep(new Random().nextInt(10));
}catch(InterruptedException ie){
}
System.out.println(this.name + "活干完了!");
this.downLatch.countDown();
}
private void doWork(){
System.out.println(this.name + "正在干活!");
}
}
Java代码 2
package org.zapldy.concurrent;
import java.util.concurrent.CountDownLatch;
public class Boss implements Runnable {
private CountDownLatch downLatch;
public Boss(CountDownLatch downLatch){
this.downLatch = downLatch;
}
public void run() {
System.out.println("老板正在等所有的工人干完活......");
try {
this.downLatch.await();
} catch (InterruptedException e) {
}
System.out.println("工人活都干完了,老板开始检查了!");
}
}
Java代码 3
package org.zapldy.concurrent;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CountDownLatchDemo {
public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();
CountDownLatch latch = new CountDownLatch(3);
Worker w1 = new Worker(latch,"张三");
Worker w2 = new Worker(latch,"李四");
Worker w3 = new Worker(latch,"王二");
Boss boss = new Boss(latch);
executor.execute(w3);
executor.execute(w2);
executor.execute(w1);
executor.execute(boss);
executor.shutdown();
}
}
当你运行CountDownLatchDemo这个对象的时候,你会发现是等所有的工人都干完了活,老板才来检查,下面是我本地机器上运行的一次结果,可以肯定的每次运行的结果可能与下面不一样,但老板检查永远是在后面的。
输出结果:
王二正在干活!
李四正在干活!
老板正在等所有的工人干完活......
张三正在干活!
张三活干完了!
王二活干完了!
李四活干完了!
工人活都干完了,老板开始检查了!
二、CountDownLatch 应用场景
典型的应用场景就是当一个服务启动时,同时会加载很多组件和服务,这时候主线程会等待组件和服务的加载。当所有的组件和服务都加载完毕后,主线程和其他线程在一起完成某个任务。
CountDownLatch 还可以实现学生一起比赛跑步的程序,CountDownLatch 初始化为学生数量的线程,鸣枪后,每个学生就是一条线程,来完成各自的任务,当第一个学生跑完全程后,CountDownLatch 就会减一,直到所有的学生完成后,CountDownLatch 会变为 0 ,接下来再一起宣布跑步成绩。
顺着这个场景,你自己就可以延伸、拓展出来很多其他任务场景。
示例:
public class CountDownLatchTest {
public static void main(String[] args) {
final CountDownLatch latch = new CountDownLatch(2);
System.out.println("主线程开始执行…… ……");
//第一个子线程执行
ExecutorService es1 = Executors.newSingleThreadExecutor();
es1.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
});
es1.shutdown();
//第二个子线程执行
ExecutorService es2 = Executors.newSingleThreadExecutor();
es2.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("子线程:"+Thread.currentThread().getName()+"执行");
latch.countDown();
}
});
es2.shutdown();
System.out.println("等待两个线程执行完毕…… ……");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("两个子线程都执行完毕,继续执行主线程");
}
}
结果集:
主线程开始执行…… ……
等待两个线程执行完毕…… ……
子线程:pool-1-thread-1执行
子线程:pool-2-thread-1执行
两个子线程都执行完毕,继续执行主线程
模拟并发示例:
public class Parallellimit {
public static void main(String[] args) {
ExecutorService pool = Executors.newCachedThreadPool();
CountDownLatch cdl = new CountDownLatch(100);
for (int i = 0; i < 100; i++) {
CountRunnable runnable = new CountRunnable(cdl);
pool.execute(runnable);
}
}
}
class CountRunnable implements Runnable {
private CountDownLatch countDownLatch;
public CountRunnable(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
try {
synchronized (countDownLatch) {
/*** 每次减少一个容量*/
countDownLatch.countDown();
System.out.println("thread counts = " + (countDownLatch.getCount()));
}
countDownLatch.await();
System.out.println("concurrency counts = " + (100 - countDownLatch.getCount()));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
CountDownLatch和CyclicBarrier区别:
1.countDownLatch是一个计数器,线程完成一个记录一个,计数器递减,只能只用一次
2.CyclicBarrier的计数器更像一个阀门,需要所有线程都到达,然后继续执行,计数器递增,提供reset功能,可以多次使用
参考链接: