点多边形测试 测试一个点是否在给定的多边形内部,边缘或者外部
double pointPolygonTest( InputArray contour, // 输入的轮廓 Point2f pt, // 测试点 bool measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离 )
步骤 构建一张400x400大小的图片, Mat::Zero(400, 400, CV_8UC1) 画上一个六边形的闭合区域line 发现轮廓 对图像中所有像素点做点 多边形测试,得到距离,归一化后显示。
int main(int argc, char** argv) { const int r = 100; Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1); vector<Point2f> vert(6); vert[0] = Point(3 * r / 2, static_cast<int>(1.34*r)); vert[1] = Point(1 * r, 2 * r); vert[2] = Point(3 * r / 2, static_cast<int>(2.866*r)); vert[3] = Point(5 * r / 2, static_cast<int>(2.866*r)); vert[4] = Point(3 * r, 2 * r); vert[5] = Point(5 * r / 2, static_cast<int>(1.34*r)); for (int i = 0; i < 6; i++) { line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8, 0); } // 画一个六边型 imshow("input_win", src); vector<vector<Point>> contours; vector<Vec4i> hierachy; Mat csrc; src.copyTo(csrc); //边界发现 findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1); for (int row = 0; row < raw_dist.rows; row++) { for (int col = 0; col < raw_dist.cols; col++) { double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)), true); raw_dist.at<float>(row, col) = static_cast<float>(dist); } } double minValue, maxValue; minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat()); Mat drawImg = Mat::zeros(src.size(), CV_8UC3); for (int row = 0; row < drawImg.rows; row++) { for (int col = 0; col < drawImg.cols; col++) { float dist = raw_dist.at<float>(row, col); if (dist > 0) { //内部 drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255); } else if (dist < 0) { //外部 drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255); } else { //边缘 drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist)); drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist)); drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist)); } } } imshow("output_win", drawImg); waitKey(0); return 0; }