LeetCode 460 LFU缓存 题解
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache 类:
LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。
注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。
为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
示例:
输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1); // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1); // 返回 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
// cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
// cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4); // 返回 4
// cache=[3,4], cnt(4)=2, cnt(3)=3
提示:
0 <= capacity, key, value <= 104
最多调用 105 次 get 和 put 方法
进阶:你可以为这两种操作设计时间复杂度为 O(1) 的实现吗?
代码:
class LFUCache {
Map<Integer, Node> cache; // 存储缓存的内容
Map<Integer, LinkedHashSet<Node>> freqMap; // 存储每个频次对应的双向链表
int size;
int capacity;
int min; // 存储当前最小频次
public LFUCache(int capacity) {
cache = new HashMap<> (capacity);
freqMap = new HashMap<>();
this.capacity = capacity;
}
public int get(int key) {
Node node = cache.get(key);
if (node == null) {
return -1;
}
freqInc(node);
return node.value;
}
public void put(int key, int value) {
if (capacity == 0) {
return;
}
Node node = cache.get(key);
if (node != null) {
node.value = value;
freqInc(node);
} else {
if (size == capacity) {
Node deadNode = removeNode();
cache.remove(deadNode.key);
size--;
}
Node newNode = new Node(key, value);
cache.put(key, newNode);
addNode(newNode);
size++;
}
}
void freqInc(Node node) {
// 从原freq对应的链表里移除, 并更新min
int freq = node.freq;
LinkedHashSet<Node> set = freqMap.get(freq);
set.remove(node);
if (freq == min && set.size() == 0) {
min = freq + 1;
}
// 加入新freq对应的链表
node.freq++;
LinkedHashSet<Node> newSet = freqMap.get(freq + 1);
if (newSet == null) {
newSet = new LinkedHashSet<>();
freqMap.put(freq + 1, newSet);
}
newSet.add(node);
}
void addNode(Node node) {
LinkedHashSet<Node> set = freqMap.get(1);
if (set == null) {
set = new LinkedHashSet<>();
freqMap.put(1, set);
}
set.add(node);
min = 1;
}
Node removeNode() {
LinkedHashSet<Node> set = freqMap.get(min);
Node deadNode = set.iterator().next();
set.remove(deadNode);
return deadNode;
}
}
class Node {
int key;
int value;
int freq = 1;
public Node() {}
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}