同样鸽了很久的三维偏序,不同点在于保证没有重复的三元组,但是要求的是严格大于。
基本思路跟带等号的cdq一模一样,但是要极度注意一个细节
比如有两个三元组(1 1 1)和(1 2 3),在三个元素都严格大于的情况下,显然第二个三元组不能大于第一个三元组
这意味着在对初始序列执行第一次排序的时候,首先按照第一维由大到小排序
但是如果第一维相等,那么第三维更小的应当排在前面
事实上统计答案的时候,总是左侧的三元组对右侧的答案有贡献
那么对于上面两个第一维相等的三元组,我们就不能让(1 1 1)位于(1 2 3)的左侧,否则将会错误统计答案
知道了这个trick之后就可以愉快地搞掉这题了。
代码:
#include <bits/stdc++.h> #define int long long #define sc(a) scanf("%lld",&a) #define scc(a,b) scanf("%lld %lld",&a,&b) #define sccc(a,b,c) scanf("%lld %lld %lld",&a,&b,&c) #define schar(a) scanf("%c",&a) #define pr(a) printf("%lld",a) #define fo(i,a,b) for(int i=a;i<b;++i) #define re(i,a,b) for(int i=a;i<=b;++i) #define rfo(i,a,b) for(int i=a;i>b;--i) #define rre(i,a,b) for(int i=a;i>=b;--i) #define prn() printf("\n") #define prs() printf(" ") #define mkp make_pair #define pii pair<int,int> #define pub(a) push_back(a) #define pob() pop_back() #define puf(a) push_front(a) #define pof() pop_front() #define fst first #define snd second #define frt front() #define bak back() #define mem0(a) memset(a,0,sizeof(a)) #define memmx(a) memset(a,0x3f3f,sizeof(a)) #define memmn(a) memset(a,-0x3f3f,sizeof(a)) #define debug #define db double #define yyes cout<<"YES"<<endl; #define nno cout<<"NO"<<endl; using namespace std; typedef vector<int> vei; typedef vector<pii> vep; typedef map<int,int> mpii; typedef map<char,int> mpci; typedef map<string,int> mpsi; typedef deque<int> deqi; typedef deque<char> deqc; typedef priority_queue<int> mxpq; typedef priority_queue<int,vector<int>,greater<int> > mnpq; typedef priority_queue<pii> mxpqii; typedef priority_queue<pii,vector<pii>,greater<pii> > mnpqii; const int maxn=1000005; const int inf=0x3f3f3f3f3f3f3f3f; const int MOD=100000007; const db eps=1e-10; int qpow(int a,int b){int tmp=a%MOD,ans=1;while(b){if(b&1){ans*=tmp,ans%=MOD;}tmp*=tmp,tmp%=MOD,b>>=1;}return ans;} int lowbit(int x){return x&-x;} int max(int a,int b){return a>b?a:b;} int min(int a,int b){return a<b?a:b;} int mmax(int a,int b,int c){return max(a,max(b,c));} int mmin(int a,int b,int c){return min(a,min(b,c));} void mod(int &a){a+=MOD;a%=MOD;} bool chk(int now){} int half(int l,int r){while(l<=r){int m=(l+r)/2;if(chk(m))r=m-1;else l=m+1;}return l;} int ll(int p){return p<<1;} int rr(int p){return p<<1|1;} int mm(int l,int r){return (l+r)/2;} int lg(int x){if(x==0) return 1;return (int)log2(x)+1;} bool smleql(db a,db b){if(a<b||fabs(a-b)<=eps)return true;return false;} db len(db a,db b,db c,db d){return sqrt((a-c)*(a-c)+(b-d)*(b-d));} bool isp(int x){if(x==1)return false;if(x==2)return true;for(int i=2;i*i<=x;++i)if(x%i==0)return false;return true;} struct node{ int a,b,c,cnt; }o[maxn],t[maxn]; int n,c[maxn]; bool cmp(node a,node b){ if(a.a!=b.a) return a.a>b.a; else return a.c<b.c; } int tr[maxn]; void add(int x,int y){ for(;x<=n;x+=lowbit(x)) tr[x]+=y; } int sum(int x){ int res=0; for(;x;x-=lowbit(x)) res+=tr[x]; return res; } void cdq(int l,int r){ if(l==r) return; int m=mm(l,r); cdq(l,m); cdq(m+1,r); int p=l,q=m+1,tot=l; while(p<=m&&q<=r){ if(o[p].b>o[q].b) add(o[p].c,1),t[tot++]=o[p++]; else o[q].cnt+=sum(n)-sum(o[q].c),t[tot++]=o[q++]; } while(p<=m) add(o[p].c,1),t[tot++]=o[p++]; while(q<=r) o[q].cnt+=sum(n)-sum(o[q].c),t[tot++]=o[q++]; re(i,l,m) add(o[i].c,-1); re(i,l,r) o[i]=t[i]; } signed main(){ ios_base::sync_with_stdio(0); cin.tie(0),cout.tie(0); cin>>n; re(i,1,n) cin>>o[i].a; re(i,1,n) cin>>o[i].b; re(i,1,n) cin>>o[i].c,c[i]=o[i].c; sort(c+1,c+1+n); re(i,1,n) o[i].c=lower_bound(c+1,c+1+n,o[i].c)-c; sort(o+1,o+1+n,cmp); cdq(1,n); int ans=0; re(i,1,n){ if(o[i].cnt){ // cout<<o[i].a<<' '<<o[i].b<<' '<<c[o[i].c]<<endl; ans++; } } cout<<ans; return 0; } /* 2 1 1 1 2 1 3 */