matlab练习程序(DBSCAN)

DBSCAN全称Density-Based Spatial Clustering of Applications with Noise,是一种密度聚类算法。

和Kmeans相比,不需要事先知道数据的类数。

以编程的角度来考虑,具体算法流程如下:

1.首先选择一个待处理数据。

2.寻找和待处理数据距离在设置半径内的数据。

3.将找到的半径内的数据放到一个队列中。

4.拿队列头数据作为当前待处理数据并不断执行第2步。

5.直到遍历完队列中所有数据,将这些数据记为一类。

6.选择没有处理到的数据作为一个待处理数据执行第2步。

7.直到遍历完所有数据,算法结束。

大概就是下图所示的样子:

matlab练习程序(DBSCAN)

我这里没有单独输出离群点,不过稍微改进增加离群点个数判断阈值应该就可以,比较容易修改。

代码如下:

clear all;
close all;
clc;

theta=0:0.01:2*pi;
p1=[3*cos(theta) + rand(1,length(theta))/2;3*sin(theta)+ rand(1,length(theta))/2];      %生成测试数据
p2=[2*cos(theta) + rand(1,length(theta))/2;2*sin(theta)+ rand(1,length(theta))/2];
p3=[cos(theta) + rand(1,length(theta))/2;sin(theta)+ rand(1,length(theta))/2];
p=[p1 p2 p3]';

randIndex = randperm(length(p))';       %打乱数据顺序
p=p(randIndex,:);
plot(p(:,1),p(:,2),'.')

flag = zeros(length(p),1);      %聚类标记
clsnum = 0;                     %类的个数
disnear = 0.3;                 %聚类半径

for i=1:length(p)   
    nxtp = p(i,:);      %初始聚类半径内的邻域点队列
    if flag(i)==0
        clsnum = clsnum+1;
        pcstart = 1;            %设置队列起始指针
        preflag = flag;         %聚类标记更新
        while pcstart<=length(nxtp)         %判断是否完成队列遍历
            curp = nxtp(pcstart,:);         %得到当前要处理的点
            pcstart = pcstart+1;            %队列指针更新
            diffp = p-curp;                 %这里直接和所有数据比较了,数据量大的时候可以考虑kdtree
            dis = sqrt(diffp(:,1).*diffp(:,1)+diffp(:,2).*diffp(:,2));      %判断当前点与所有点之间的距离        

            ind = dis<disnear;                  %得到距离小于阈值的索引
            flag(ind) = clsnum;                 %设置当前聚类标记
            
            diff_flag = preflag-flag;   
            diff_ind = (preflag-flag)<0;        %判断本次循环相比上次循环增加的点
            
            tmp = zeros(length(p),1);
            tmp(diff_ind) = clsnum;
            flag = flag + tmp;                  %增加的点将其标记为一类
            preflag = flag;                 %聚类标记更新
            nxtp = [nxtp;p(diff_ind,:)];    %增加聚类半径内的邻域点队列
        end       
    end    
end

%聚类可能不止三组,我偷懒不想判断并plot了 figure; plot(p(flag==1,1),p(flag==1,2),'r.') hold on; plot(p(flag==2,1),p(flag==2,2),'g.') plot(p(flag==3,1),p(flag==3,2),'b.')

结果如下:

原始数据:

matlab练习程序(DBSCAN)

聚类结果:

matlab练习程序(DBSCAN)

上一篇:DBSCAN 优化算法


下一篇:Python深度学习读书笔记(六)(使用预训练的词嵌入优化IMDB评论分类)