Apche Kafka 的生与死 – failover 机制详解

转自:http://www.cnblogs.com/fxjwind/p/4972244.html

Kafka 作为 high throughput 的消息中间件,以其性能,简单和稳定性,成为当前实时流处理框架中的主流的基础组件。

当然在使用 Kafka 中也碰到不少问题,尤其是 failover 的问题,常常给大家带来不少困扰和麻烦。 
所以在梳理完 kafka 源码的基础上,尽量用通俗易懂的方式,把 Kafka 发生 failover 时的机制解释清楚,让大家在使用和运维中,做到心中有数。

如果对 kafka 不了解的,可以先参考https://kafka.apache.org/08/design.html,有个大致的概念。

0 背景

这里讨论 kafka 的 failover 的前提是在0.8版本后, kafka 提供了 replica 机制。 
对于0.7版本不存在 failover 的说法,因为任意一个 broker dead 都会导致上面的数据不可读,从而导致服务中断。

下面简单的介绍一下 0.8中加入的 replica 机制和相应的组件,

Replica 机制

基本思想大同小异,如下图 (Ref.2):

Apche Kafka 的生与死 – failover 机制详解

图中有4个 kafka brokers,并且Topic1有四个 partition(用蓝色表示)分布在4个 brokers 上,为 leader replica; 
且每个 partition 都有两个 follower replicas(用橘色表示),分布在和 leader replica 不同的 brokers。 
这个分配算法很简单,有兴趣的可以参考kafka的design。

Replica 组件

为了支持replica机制,主要增加的两个组件是,Replica Manager和Controller, 如下图:

Apche Kafka 的生与死 – failover 机制详解

Replica Manager

每个 broker server 都会创建一个 Replica Manager,所有的数据的读写都需要经过它 , 
0.7版本,kafka 会直接从 LogManager 中读数据,但在增加 replica 机制后,只有 leader replica 可以响应数据的读写请求 。 
所以,Replica Manager 需要管理所有 partition 的 replica 状态,并响应读写请求,以及其他和 replica 相关的操作。

Controller

大家可以看到,每个 partition 都有一个 leader replica,和若干的 follower replica,那么谁来决定谁是leader? 
你说有 zookeeper,但用 zk 为每个 partition 做 elect,效率太低,而且 zk 会不堪重负; 
所以现在的通用做法是,只用 zk 选一个 master 节点,然后由这个 master 节点来做其他的所有仲裁工作。 
kafka 的做法就是在 brokers 中选出一个作为 controller,来做为 master 节点,从而仲裁所有的 partition 的 leader 选举。

下面我们会从如下几个方面来解释 failover 机制, 
先从 client 的角度看看当 kafka 发生 failover 时,数据一致性问题。 
然后从 Kafka 的各个重要组件,Zookeeper,Broker, Controller 发生 failover 会造成什么样的影响? 
最后给出一些判断 kafka 状态的 tips。

1 从 Client 的角度

从 producer 的角度, 发的数据是否会丢?

除了要打开 replica 机制,还取决于 produce 的 request.required.acks 的设置,

  • acks = 0,发就发了,不需要 ack,无论成功与否 ;
  • acks = 1,当写 leader replica 成功后就返回,其他的 replica 都是通过fetcher去异步更新的,当然这样会有数据丢失的风险,如果leader的数据没有来得及同步,leader挂了,那么会丢失数据;
  • acks = –1, 要等待所有的replicas都成功后,才能返回;这种纯同步写的延迟会比较高。

所以,一般的情况下,thoughput 优先,设成1,在极端情况下,是有可能丢失数据的; 
如果可以接受较长的写延迟,可以选择将 acks 设为 –1。

从 consumer 的角度, 是否会读到不一致的数据?

首先无论是 high-level 或 low-level consumer,我们要知道他是怎么从 kafka 读数据的?

Apche Kafka 的生与死 – failover 机制详解

kafka 的 log patition 存在文件中,并以 offset 作为索引,所以 consumer 需要对于每个 partition 记录上次读到的 offset (high-level和low-level的区别在于是 kafka 帮你记,还是你自己记);

所以如果 consumer dead,重启后只需要继续从上次的 offset 开始读,那就不会有不一致的问题。

但如果是 Kafka broker dead,并发生 partition leader 切换,如何保证在新的 leader 上这个 offset 仍然有效?  
Kafka 用一种机制,即 committed offset,来保证这种一致性,如下图(Ref.2)

Apche Kafka 的生与死 – failover 机制详解

log 除了有 log end offset 来表示 log 的末端,还有一个 committed offset, 表示有效的 offset; 
committed offset 只有在所有 replica 都同步完该 offset 后,才会被置为该offset; 
所以图中 committed 置为2, 因为 broker3 上的 replica 还没有完成 offset 3 的同步; 
所以这时,offset 3 的 message 对 consumer 是不可见的,consumer最多只能读到 offset 2。 
如果此时,leader dead,无论哪个 follower 重新选举成 leader,都不会影响数据的一致性,因为consumer可见的offset最多为2,而这个offset在所有的replica上都是一致的。

所以在一般正常情况下,当 kafka 发生 failover 的时候,consumer 是不会读到不一致数据的。特例的情况就是,当前 leader 是唯一有效的 replica,其他replica都处在完全不同步状态,这样发生 leader 切换,一定是会丢数据的,并会发生 offset 不一致。

2 Zookeeper Failover

Kafka 首先对于 zookeeper 是强依赖,所以 zookeeper 发生异常时,会对数据造成如何的影响?

Zookeeper Dead

如果 zookeeper dead,broker 是无法启动的,报如下的异常:

Apche Kafka 的生与死 – failover 机制详解

这种异常,有可能是 zookeeper dead,也有可能是网络不通,总之就是连不上 zookeeper。 
这种 case,kafka完全不工作,直到可以连上 zookeeper 为止。

Zookeeper Hang

其实上面这种情况比较简单,比较麻烦的是 zookeeper hang,可以说 kafka 的80%以上问题都是由于这个原因 
zookeeper hang 的原因有很多,主要是 zk 负载过重,zk 所在主机 cpu,memeory 或网络资源不够等

zookeeper hang 带来的主要问题就是 session timeout,这样会触发如下的问题,

a. Controller Fail,Controller 发生重新选举和切换,具体过程参考下文。

b. Broker Fail,导致partition的leader发生切换或partition offline,具体过程参考下文。

c. Broker 被 hang 住 。 
这是一种比较特殊的 case,出现时在 server.log 会出现如下的log,

server.log: 
“INFO I wrote this conflicted ephemeral node [{"jmx_port":9999,"timestamp":"1444709  63049","host":"10.151.4.136","version":1,"port":9092}] at /brokers/ids/1 a while back in a different session, hence I will backoff for this node to be deleted by Zookeeper and retry (kafka.utils.ZkUtils$)”

这个问题本身是由于 zookeeper 的一个 bug,参考:https://issues.apache.org/jira/browse/ZOOKEEPER-1740

问题在于“The current behavior of zookeeper for ephemeral nodes is that session expiration and ephemeral node deletion is not an atomic operation.” 
即 zk 的 session 过期和 ephemeral node 删除并不是一个原子操作; 
出现的case如下:

  • 在极端case下,zk 触发了 session timeout,但还没来得及完成 /brokers/ids/1 节点的删除,就被 hang 住了,比如是去做很耗时的 fsync 操作 。
  • 但是 broker 1 收到 session timeout 事件后,会尝试重新去 zk 上创建 /brokers/ids/1 节点,可这时旧的节点仍然存在,所以会得到 NodeExists,其实这个是不合理的,因为既然 session timeout,这个节点就应该不存在。
  • 通常的做法,既然已经存在,我就不管了,该干啥干啥去;问题是一会 zk 从 fsync hang 中恢复了,他会记得还有一个节点没有删除,这时会去把 /brokers/ids/1 节点删除。
  • 结果就是对于client,虽然没有再次收到 session 过期的事件,但是 /brokers/ids/1 节点却不存在了。

所以这里做的处理是,在前面发现 NodeExists 时,while true 等待,一直等到 zk 从 hang 中恢复删除该节点,然后创建新节点成功,才算完; 
这样做的结果是这个broker也会被一直卡在这儿,等待该节点被成功创建。

3 Broker Failover

Broker 的 Failover,可以分为两个过程,一个是 broker failure, 一个是 broker startup。

新加 broker

在谈failover之前,我们先看一个更简单的过程,就是新加一个全新的 broker: 
首先明确,新加的 broker 对现存所有的 topic 和 partition,不会有任何影响; 
因为一个 topic 的 partition 的所有 replica 的 assignment 情况,在创建时就决定了,并不会自动发生变化,除非你手动的去做 reassignment。 
所以新加一个 broker,所需要做的只是大家同步一下元数据,大家都知道来了一个新的 broker,当你创建新的 topic 或 partition 的时候,它会被用上。

Broker Failure

首先明确,这里的 broker failure,并不一定是 broker server 真正的 dead了, 只是指该 broker 所对应的 zk ephemeral node ,比如/brokers/ids/1,发生 session timeout; 
当然发生这个的原因,除了server dead,还有很多,比如网络不通;但是我们不关心,只要出现 sessioin timeout,我们就认为这个 broker 不工作了; 
会出现如下的log,

controller.log: 
“INFO [BrokerChangeListener on Controller 1]: Newly added brokers: 3, deleted brokers: 4, all live brokers: 3,2,1 (kafka.controller.ReplicaStateMachine$BrokerChangeListener)” 
“INFO [Controller 1]: Broker failure callback for 4 (kafka.controller.KafkaController)”

当一个 broker failure 会影响什么,其实对于多 replicas 场景,一般对最终客户没啥影响。 
只会影响哪些 leader replica 在该 broker 的 partitions; 需要重新做 leader election,如果无法选出一个新的 leader,会导致 partition offline。 
因为如果只是 follow replica failure,不会影响 partition 的状态,还是可以服务的,只是可用 replica 少了一个;需要注意的是,kafka 是不会自动补齐失败的replica的,即坏一个少一个; 
但是对于 leader replica failure,就需要重新再 elect leader,前面已经讨论过,新选取出的 leader 是可以保证 offset 一致性的;

Note: 其实这里的一致性是有前提的,即除了 fail 的 leader,在 ISR(in-sync replicas) 里面还存在其他的 replica;顾名思义,ISR,就是能 catch up with leader 的 replica。 
虽然 partition 在创建的时候,会分配一个 AR(assigned replicas),但是在运行的过程中,可能会有一些 replica 由于各种原因无法跟上 leader,这样的 replica 会被从 ISR 中去除。 
所以 ISR <= AR; 
如果,ISR 中 没有其他的 replica,并且允许 unclean election,那么可以从 AR 中选取一个 leader,但这样一定是丢数据的,无法保证 offset 的一致性。

Broker Startup

这里的 startup,就是指 failover 中的 startup,会出现如下的log,

controller.log: 
“INFO [BrokerChangeListener on Controller 1]: Newly added brokers: 3, deleted brokers: 4, all live brokers: 3,2,1 (kafka.controller.ReplicaStateMachine$BrokerChangeListener)” 
“INFO [Controller 1]: New broker startup callback for 
3 (kafka.controller.KafkaController)”

过程也不复杂,先将该 broker 上的所有的 replica 设为 online,然后触发 offline partition 或 new partition 的 state 转变为 online; 
所以 broker startup,只会影响 offline partition 或 new partition,让他们有可能成为 online。 
那么对于普通的已经 online partition,影响只是多一个可用的 replica,那还是在它完成catch up,被加入 ISR 后的事。

Note: Partition 的 leader 在 broker failover 后,不会马上自动切换回来,这样会产生的问题是,broker间负载不均衡,因为所有的读写都需要通过 leader。 
为了解决这个问题,在server的配置中有个配置,auto.leader.rebalance.enable,将其设为true; 
这样 Controller 会启动一个 scheduler 线程,定期去为每个 broker 做 rebalance,即发现如果该 broker 上的 imbalance ratio 达到一定比例,就会将其中的某些 partition 的 leader,进行重新 elect 到原先的 broker 上。

4 Controller Failover

前面说明过,某个 broker server 会被选出作为 Controller,这个选举的过程就是依赖于 zookeeper 的 ephemeral node,谁可以先在"/controller"目录创建节点,谁就是 controller; 
所以反之,我们也是 watch 这个目录来判断 Controller 是否发生 failover 或 变化。Controller 发生 failover 时,会出现如下 log:

controller.log: 
“INFO [SessionExpirationListener on 1], ZK expired; shut down all controller components and try to re-elect (kafka.controller.KafkaController$SessionExpirationListener)”

Controller 主要是作为 master 来仲裁 partition 的 leader 的,并维护 partition 和 replicas 的状态机,以及相应的 zk 的 watcher 注册;

Controller 的 failover 过程如下:

  • 试图去在“/controller” 目录抢占创建 ephemeral node;
  • 如果已经有其他的 broker 先创建成功,那么说明新的 controller 已经诞生,更新当前的元数据即可;
  • 如果自己创建成功,说明我已经成为新的 controller,下面就要开始做初始化工作,
  • 初始化主要就是创建和初始化 partition 和 replicas 的状态机,并对 partitions 和 brokers 的目录的变化设置 watcher。

可以看到,单纯 Controller 发生 failover,是不会影响正常数据读写的,只是 partition 的 leader 无法被重新选举,如果此时有 partition 的 leader fail,会导致 partition offline; 
但是 Controller 的 dead,往往是伴随着 broker 的 dead,所以在 Controller 发生 failover 的过程中,往往会出现 partition offline, 导致数据暂时不可用。

5 Tips

Kafka 提供一些工具来方便的查看信息,参考:Kafka Tools

a, 验证topic 是否work?

最简单的方式,就是用 producer 和 consumer console 来测试

Producer console,如下可以往 localhost 的 topic test,插入两条 message,

> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message

Consumer console,如下就可以把刚写入的 message 读出,

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning

如果整个过程没有报错,ok,说明你的topic是可以工作的

b, 再看看topic是否健康?

bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic test

这样会打印出 topic test 的 detail 信息,如图,

Apche Kafka 的生与死 – failover 机制详解

从这个图可以说明几个问题:

首先,topic 有几个 partitions,并且 replicas factor 是多少,即有几个 replica? 
图中分别有32个 partitions,并且每个 partition 有两个 replica。

再者,每个 partition 的 replicas 都被分配到哪些 brokers 上,并且该 partition 的 leader 是谁? 
比如,图中的 partition0,replicas 被分配到 brokers 4和1上面,其中 leader replica 在 broker 1 上。

最后,是否健康? 
从以下几个方面依次表明健康程度,

  • Isr 为空,说明这个 partition 已经 offline 无法提供服务了,这种 case 在我们的图中没有出现;
  • Isr 有数据,但是 Isr < Replicas,这种情况下对于用户是没有感知的,但是说明有部分 replicas 已经出问题了,至少是暂时无法和 leader 同步;比如,图中的 partition0,Isr 只有1,说明 replica 4 已经 offline
  • Isr = Replicas,但是 leader 不是 Replicas 中的第一个 replica,这个说明 leader 是发生过重新选取的,这样可能会导致 brokers 负载不均衡;比如,图中的 partition9,leader是2,而不是3,说明虽然当前它的所有 replica 都是正常的,但之前发生过重新选举。

c,最后就是看kafka的日志,kafka/logs

主要是看 controller.log 和 server.log,分别记录 controller 和 broker server 的日志。 
然后根据前面我给的每种异常的日志,你可以看出来到底是出现什么问题。

Reference

1. https://kafka.apache.org/08/design.html

2. Neha NarkhedeHands-free Kafka Replication: A lesson in operational simplicity

3. Kafka Tools

上一篇:ping详解


下一篇:Springboot分模块开发详解(1):建立父工程