一、什么是统计信息
oracle数据库里的统计信息是如下的一组数据:他们存储在数据字典里,且从多个维度描述了oracle数据库数据对象的详细信息。
oracle数据库里的统计信息主要分为以下6种情况:
(1)表的统计信息。
(2)列的统计信息。
(3)索引的统计信息。
(4)系统统计信息。
(5)数据字典统计信息。
(6)内部对象统计信息。
二、oracle收集和查看统计信息的方法
oracle数据库收集统计信息一般有以下2种方法:
(1)analyze命令。
(2)dbms_stats包。
针对以上6种统计信息,其中“表的统计信息”,“索引统计信息”,“列统计信息”,“数据字典统计信息”使用analyze或dbms_stats包收集均可以,但是“系统统计信息”和“内部对象统计信息”必须要dbms_stats包来收集才可以。
1、使用analyze命令收集统计信息
从oralce7开始,analyze命令就用来收集表、索引和列的统计信息。从oracle10g开始,创建索引后oracle会自动为您收集目标索引统计信息。analyze命令收集统计信息不会抹掉之间analyze结果。
创建测试表:
SQL>create table t1 as select * from dba_objects;
SQL>create index idx_t1 on t1(object_id);
(1)analyze索引统计信息:
SQL>analyze index idx_t1 delete statistics;
(2)对表收集统计信息,并且以估算模式,采样比为15%:
SQL>analyze table t1 estimate statistics sample 15 percent for table;
(3)对表收集统计信息,以统计模式:
SQL>analyze table t1 compute statistics for table;
(4)对列收集统计信息,以计算模式:
SQL>analyze table t1 compute statistics for columns object_name,object_id;
(5)以计算模式对表和列同时收集统计信息:
SQL>analyze table t1 compute statistics for t1 for columns object_name,object_id;
(6)以计算模式对索引收集统计信息:
SQL>analyze index idx_t1 compute statistics;
(7)删除表、表上的索引、表的所有列的统计信息:
SQL>analyze table t1 delete statistics;
(8)以计算模式,同时收集表、表上的列、表上的索引的统计信息:
SQL>analyze table t1 compute statistics;
2、使用dbms_stats包收集统计信息
从oracle 8.1.5开始,dbms_stats包就被广泛用于统计信息的收集,用dbms_stats包收集统计信息也是oracle官方推荐的方式。在收集CBO所需要的统计信息方面,可以简单的将dbms_stats包理解成是analyze命令的增强版。
DBMS_STATS包最常见的4个存储过程:
(1)dbms_stats.gather_table_stats:用于收集目标表,目标表上列及目标表上索引的统计信息。
(2)dbms_stats.gather_index_stats:用于收集指定索引的统计信息。
(3)dbms_stats.gather_schema_stats:用于收集schema下所有对象的统计信息。
(4)dbms_stats.gather_database_stats:用于收集全库统计对象的统计信息。
以下是dbms_stats包的具体用法:
(1)对表收集统计信息,并且以估算模式,采样比为15%:
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>15,method_opt=>'FOR TABLE',cascade=>FALSE);
注意:method_opt参数指定了FOR TABLE不是在所有版本oracle下都是好用的。
(2)对表收集统计信息,以计算模式:
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>100,method_opt=>'FOR TABLE',cascade=>FALSE);
或
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>NULL,method_opt=>'FOR TABLE',cascade=>FALSE);
(3)对列收集统计信息,以计算模式:
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>100,method_opt=>'FOR ALL CULUMNS SIZE 1 OBJECT_NAME OBJECT_ID',cascade=>FALSE);
注意:以上方法收集了列objec_name、object_id的统计信息,同时也会收集表的统计信息。
(4)以计算模式对索引收集统计信息:
SQL>exec dbms_stats.gather_index_stats(ownname=>'SCOTT',indname=>'INDEX_T1',estimate_percent=>100);
(5)删除表、表上的索引、表的所有列的统计信息:
SQL>exec dbms_stats.delete_table_stats(ownname=>'SCOTT',tabname=>'T1');
(6)以计算模式,同时收集表、表上的列、表上的索引的统计信息:
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>15 ,cascade=>TRUE);
3、analyze和dbms_stats的区别
(1)analyze命令不能正确的收集分区表的统计信息,而dbms_stats包缺可以。
(2)analyze命令不能以并行收集统计信息,而dbms_stats包缺可以。
SQL>exec dbms_stats.gather_table_stats(ownname=>'SCOTT',tabname=>'T1',estimate_percent=>100, cascade=>FALSE,degree=>4);
(3)dbms_stats包只能收集与CBO相关的统计信息,而与CBO无关的额外信息,比如行迁移/行链接的数量(chain_cnt),校验表和索引的结构信息等,dbms_stats包就无能为力了,而analyze命令是可以用来分析和收集上述额外信息。比如:
SQL>analyze table XXX list chained rows into YYY; --用来分析和收集行迁移/行链接的数量。
SQL>analyze index XXX validate structure; --用来分析索引结构。
4、查看统计信息
oracle里的统计信息存储在数据字典表中,可以通过脚本来查询对象的统计信息。
sosi.sh脚本如下(可以查看表、索引、列的统计信息):
set echo off
set scan on
set lines 150
set pages 66
set verify off
set feedback off
set termout off
column uservar new_value Table_Owner noprint
select user uservar from dual;
set termout on
column TABLE_NAME heading "Tables owned by &Table_Owner" format a30
select table_name from dba_tables where owner=upper('&Table_Owner') order by 1
/
undefine table_name
undefine owner
prompt
accept owner prompt 'Please enter Name of Table Owner (Null = &Table_Owner): '
accept table_name prompt 'Please enter Table Name to show Statistics for: '
column TABLE_NAME heading "Table|Name" format a15
column PARTITION_NAME heading "Partition|Name" format a15
column SUBPARTITION_NAME heading "SubPartition|Name" format a15
column NUM_ROWS heading "Number|of Rows" format 9,999,999,990
column BLOCKS heading "Blocks" format 999,990
column EMPTY_BLOCKS heading "Empty|Blocks" format 999,999,990
column AVG_SPACE heading "Average|Space" format 9,990
column CHAIN_CNT heading "Chain|Count" format 999,990
column AVG_ROW_LEN heading "Average|Row Len" format 990
column COLUMN_NAME heading "Column|Name" format a25
column NULLABLE heading Null|able format a4
column NUM_DISTINCT heading "Distinct|Values" format 999,999,990
column NUM_NULLS heading "Number|Nulls" format 9,999,990
column NUM_BUCKETS heading "Number|Buckets" format 990
column DENSITY heading "Density" format 990
column INDEX_NAME heading "Index|Name" format a15
column UNIQUENESS heading "Unique" format a9
column BLEV heading "B|Tree|Level" format 90
column LEAF_BLOCKS heading "Leaf|Blks" format 990
column DISTINCT_KEYS heading "Distinct|Keys" format 9,999,999,990
column AVG_LEAF_BLOCKS_PER_KEY heading "Average|Leaf Blocks|Per Key" format 99,990
column AVG_DATA_BLOCKS_PER_KEY heading "Average|Data Blocks|Per Key" format 99,990
column CLUSTERING_FACTOR heading "Cluster|Factor" format 999,999,990
column COLUMN_POSITION heading "Col|Pos" format 990
column col heading "Column|Details" format a24
column COLUMN_LENGTH heading "Col|Len" format 9,990
column GLOBAL_STATS heading "Global|Stats" format a6
column USER_STATS heading "User|Stats" format a6
column SAMPLE_SIZE heading "Sample|Size" format 9,999,999,990
column to_char(t.last_analyzed,'MM-DD-YYYY') heading "Date|MM-DD-YYYY" format a10
prompt
prompt ***********
prompt Table Level
prompt ***********
prompt
select
TABLE_NAME,
NUM_ROWS,
BLOCKS,
EMPTY_BLOCKS,
AVG_SPACE,
CHAIN_CNT,
AVG_ROW_LEN,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from dba_tables t
where
owner = upper(nvl('&&Owner',user))
and table_name = upper('&&Table_name')
/
select
COLUMN_NAME,
decode(t.DATA_TYPE,
'NUMBER',t.DATA_TYPE||'('||
decode(t.DATA_PRECISION,
null,t.DATA_LENGTH||')',
t.DATA_PRECISION||','||t.DATA_SCALE||')'),
'DATE',t.DATA_TYPE,
'LONG',t.DATA_TYPE,
'LONG RAW',t.DATA_TYPE,
'ROWID',t.DATA_TYPE,
'MLSLABEL',t.DATA_TYPE,
t.DATA_TYPE||'('||t.DATA_LENGTH||')') ||' '||
decode(t.nullable,
'N','NOT NULL',
'n','NOT NULL',
NULL) col,
NUM_DISTINCT,
DENSITY,
NUM_BUCKETS,
NUM_NULLS,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from dba_tab_columns t
where
table_name = upper('&Table_name')
and owner = upper(nvl('&Owner',user))
/
select
INDEX_NAME,
UNIQUENESS,
BLEVEL BLev,
LEAF_BLOCKS,
DISTINCT_KEYS,
NUM_ROWS,
AVG_LEAF_BLOCKS_PER_KEY,
AVG_DATA_BLOCKS_PER_KEY,
CLUSTERING_FACTOR,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_indexes t
where
table_name = upper('&Table_name')
and table_owner = upper(nvl('&Owner',user))
/
break on index_name
select
i.INDEX_NAME,
i.COLUMN_NAME,
i.COLUMN_POSITION,
decode(t.DATA_TYPE,
'NUMBER',t.DATA_TYPE||'('||
decode(t.DATA_PRECISION,
null,t.DATA_LENGTH||')',
t.DATA_PRECISION||','||t.DATA_SCALE||')'),
'DATE',t.DATA_TYPE,
'LONG',t.DATA_TYPE,
'LONG RAW',t.DATA_TYPE,
'ROWID',t.DATA_TYPE,
'MLSLABEL',t.DATA_TYPE,
t.DATA_TYPE||'('||t.DATA_LENGTH||')') ||' '||
decode(t.nullable,
'N','NOT NULL',
'n','NOT NULL',
NULL) col
from
dba_ind_columns i,
dba_tab_columns t
where
i.table_name = upper('&Table_name')
and owner = upper(nvl('&Owner',user))
and i.table_name = t.table_name
and i.column_name = t.column_name
order by index_name,column_position
/
prompt
prompt ***************
prompt Partition Level
prompt ***************
select
PARTITION_NAME,
NUM_ROWS,
BLOCKS,
EMPTY_BLOCKS,
AVG_SPACE,
CHAIN_CNT,
AVG_ROW_LEN,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_tab_partitions t
where
table_owner = upper(nvl('&&Owner',user))
and table_name = upper('&&Table_name')
order by partition_position
/
break on partition_name
select
PARTITION_NAME,
COLUMN_NAME,
NUM_DISTINCT,
DENSITY,
NUM_BUCKETS,
NUM_NULLS,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_PART_COL_STATISTICS t
where
table_name = upper('&Table_name')
and owner = upper(nvl('&Owner',user))
/
break on partition_name
select
t.INDEX_NAME,
t.PARTITION_NAME,
t.BLEVEL BLev,
t.LEAF_BLOCKS,
t.DISTINCT_KEYS,
t.NUM_ROWS,
t.AVG_LEAF_BLOCKS_PER_KEY,
t.AVG_DATA_BLOCKS_PER_KEY,
t.CLUSTERING_FACTOR,
t.GLOBAL_STATS,
t.USER_STATS,
t.SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_ind_partitions t,
dba_indexes i
where
i.table_name = upper('&Table_name')
and i.table_owner = upper(nvl('&Owner',user))
and i.owner = t.index_owner
and i.index_name=t.index_name
/
prompt
prompt ***************
prompt SubPartition Level
prompt ***************
select
PARTITION_NAME,
SUBPARTITION_NAME,
NUM_ROWS,
BLOCKS,
EMPTY_BLOCKS,
AVG_SPACE,
CHAIN_CNT,
AVG_ROW_LEN,
GLOBAL_STATS,
USER_STATS,
SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_tab_subpartitions t
where
table_owner = upper(nvl('&&Owner',user))
and table_name = upper('&&Table_name')
order by SUBPARTITION_POSITION
/
break on partition_name
select
p.PARTITION_NAME,
t.SUBPARTITION_NAME,
t.COLUMN_NAME,
t.NUM_DISTINCT,
t.DENSITY,
t.NUM_BUCKETS,
t.NUM_NULLS,
t.GLOBAL_STATS,
t.USER_STATS,
t.SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_SUBPART_COL_STATISTICS t,
dba_tab_subpartitions p
where
t.table_name = upper('&Table_name')
and t.owner = upper(nvl('&Owner',user))
and t.subpartition_name = p.subpartition_name
and t.owner = p.table_owner
and t.table_name=p.table_name
/
break on partition_name
select
t.INDEX_NAME,
t.PARTITION_NAME,
t.SUBPARTITION_NAME,
t.BLEVEL BLev,
t.LEAF_BLOCKS,
t.DISTINCT_KEYS,
t.NUM_ROWS,
t.AVG_LEAF_BLOCKS_PER_KEY,
t.AVG_DATA_BLOCKS_PER_KEY,
t.CLUSTERING_FACTOR,
t.GLOBAL_STATS,
t.USER_STATS,
t.SAMPLE_SIZE,
to_char(t.last_analyzed,'MM-DD-YYYY')
from
dba_ind_subpartitions t,
dba_indexes i
where
i.table_name = upper('&Table_name')
and i.table_owner = upper(nvl('&Owner',user))
and i.owner = t.index_owner
and i.index_name=t.index_name
/
clear breaks
set echo on