抑制libsvm(python)中的输出

我使用python的libsvm(svmutils)进行分类任务.分类器是准确的.但是,我得到这样的输出:

*
optimization finished, #iter = 75
nu = 0.000021
obj = -0.024330, rho = 0.563710
nSV = 26, nBSV = 0
Total nSV = 26
*
optimization finished, #iter = 66
nu = 0.000030
obj = -0.035536, rho = -0.500676
nSV = 21, nBSV = 0
Total nSV = 21
*
optimization finished, #iter = 78
nu = 0.000029
obj = -0.033921, rho = -0.543311
nSV = 23, nBSV = 0
Total nSV = 23
*
optimization finished, #iter = 90
nu = 0.000030
obj = -0.035333, rho = -0.634721
nSV = 23, nBSV = 0
Total nSV = 23
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)

有什么方法可以压制这个对话框吗?分类器非常好,我很好奇.此外,“准确性”代表什么?为什么在我的情况下这是0%? (数据在80个维度上不重叠.总共4个类.我也正确地将其标准化.)

解决方法:

使用-q参数选项

import svmutil
param = svmutil.svm_parameter('-q')
...

要么

import svmutil
x = [[0.2, 0.1], [0.7, 0.6]]
y = [0, 1]
svmutil.svm_train(y, x, '-q')
上一篇:如何在serialVersionUID发生变化后在java中加载libsvm模型


下一篇:python – scikit-learn OpenMP libsvm