boost::function和boost:bind取代虚函数

以boost::function和boost:bind取代虚函数

这是一篇比较情绪化的blog,中心思想是“继承就像一条贼船,上去就下不来了”,而借助boost::function和boost::bind,大多数情况下,你都不用上贼船。

boost::function和boost::bind已经纳入了std::tr1,这或许是C++0x最值得期待的功能,它将彻底改变C++库的设计方式,以及应用程序的编写方式。

Scott Meyers的Effective C++ 3rd ed.第35条款提到了以boost::function和boost:bind取代虚函数的做法,这里谈谈我自己使用的感受。

基本用途

boost::function就像C#里的delegate,可以指向任何函数,包括成员函数。当用bind把某个成员函数绑到某个对象上时,我们得到了一个closure(闭包)。例如:

class Foo

{

 public:

  void methodA();

  void methodInt(int a);

};

class Bar

{

 public:

  void methodB();

};

boost::function<void()> f1; // 无参数,无返回值

Foo foo;

f1 = boost::bind(&Foo::methodA, &foo);

f1(); // 调用 foo.methodA();

Bar bar;

f1 = boost::bind(&Bar::methodB, &bar);

f1(); // 调用 bar.methodB();

f1 = boost::bind(&Foo::methodInt, &foo, 42);

f1(); // 调用 foo.methodInt(42);

boost::function<void(int)> f2; // int 参数,无返回值

f2 = boost::bind(&Foo::methodInt, &foo, _1);

f2(53); // 调用 foo.methodInt(53);

如果没有boost::bind,那么boost::function就什么都不是,而有了bind(),“同一个类的不同对象可以delegate给不同的实现,从而实现不同的行为”(myan语),简直就无敌了。

对程序库的影响

程序库的设计不应该给使用者带来不必要的限制(耦合),而继承是仅次于最强的一种耦合(最强耦合的是友元)。如果一个程序库限制其使用者必须从某个class派生,那么我觉得这是一个糟糕的设计。不巧的是,目前有些程序库就是这么做的。

例1:线程库

常规OO设计:

写一个Thread base class,含有(纯)虚函数 Thread#run(),然后应用程序派生一个继承class,覆写run()。程序里的每一种线程对应一个Thread的派生类。例如Java的Thread可以这么用。

缺点:如果一个class的三个method需要在三个不同的线程中执行,就得写helper class(es)并玩一些OO把戏。

基于closure的设计:

令Thread是一个具体类,其构造函数接受Callable对象。应用程序只需提供一个Callable对象,创建一份Thread实体,调用Thread#start()即可。Java的Thread也可以这么用,传入一个Runnable对象。C#的Thread只支持这一种用法,构造函数的参数是delegate ThreadStart。boost::thread也只支持这种用法。

// 一个基于 closure 的 Thread class 基本结构

class Thread

{

 public:

  typedef boost::function<void()> ThreadCallback;

  Thread(ThreadCallback cb) : cb_(cb)

  { }

  void start()

  {

    /* some magic to call run() in new created thread */

  }

 private:

  void run()

  {

    cb_();

  }

  ThreadCallback cb_;

  // ...

};

使用:

class Foo

{

 public:

  void runInThread();

};

Foo foo;

Thread thread(boost::bind(&Foo::runInThread, &foo));

thread.start();

例2:网络库

以boost::function作为桥梁,NetServer class对其使用者没有任何类型上的限制,只对成员函数的参数和返回类型有限制。使用者EchoService也完全不知道NetServer的存在,只要在main()里把两者装配到一起,程序就跑起来了。

// library

class Connection;

class NetServer : boost::noncopyable

{

 public:

  typedef boost::function<void (Connection*)> ConnectionCallback;

  typedef boost::function<void (Connection*, const void*, int len)> MessageCallback;

  NetServer(uint16_t port);

  ~NetServer();

  void registerConnectionCallback(const ConnectionCallback&);

  void registerMessageCallback(const MessageCallback&);

  void sendMessage(Connection*, const void* buf, int len);

 private:

  // ...

};

// user

class EchoService

{

 public:

  typedef boost::function<void(Connection*, const void*, int)> SendMessageCallback; // 符合NetServer::sendMessage的原型

EchoService(const SendMessageCallback& sendMsgCb)

    : sendMessageCb_(sendMsgCb)

  { }

  void onMessage(Connection* conn, const void* buf, int size) // 符合NetServer::NetServer::MessageCallback的原型

  {

    printf("Received Msg from Connection %d: %.*s/n", conn->id(), size, (const char*)buf);

    sendMessageCb_(conn, buf, size); // echo back

  }

  void onConnection(Connection* conn) // 符合NetServer::NetServer::ConnectionCallback的原型

  {

    printf("Connection from %s:%d is %s/n", conn->ipAddr(), conn->port(), conn->connected() ? "UP" : "DOWN");

  }

 private:

  SendMessageCallback sendMessageCb_;

};

// 扮演上帝的角色,把各部件拼起来

int main()

{

  NetServer server(7);

  EchoService echo(bind(&NetServer::sendMessage, &server, _1, _2, _3));

  server.registerMessageCallback(bind(&EchoService::onMessage, &echo, _1, _2, _3));

  server.registerConnectionCallback(bind(&EchoService::onConnection, &echo, _1));

  server.run();

}

对面向对象程序设计的影响

一直以来,我对面向对象有一种厌恶感,叠床架屋,绕来绕去的,一拳拳打在棉花上,不解决实际问题。面向对象三要素是封装、继承和多态。我认为封装是根本的,继承和多态则是可有可无。用class来表示concept,这是根本的;至于继承和多态,其耦合性太强,往往不划算。

继承和多态不仅规定了函数的名称、参数、返回类型,还规定了类的继承关系。在现代的OO编程语言里,借助反射和attribute/annotation,已经大大放宽了限制。举例来说,JUnit 3.x 是用反射,找出派生类里的名字符合 void test*() 的函数来执行,这里就没继承什么事,只是对函数的名称有部分限制(继承是全面限制,一字不差)。至于JUnit 4.x 和 NUnit 2.x 则更进一步,以annoatation/attribute来标明test case,更没继承什么事了。

我的猜测是,当初提出面向对象的时候,closure还没有一个通用的实现,所以它没能算作基本的抽象工具之一。现在既然closure已经这么方便了,或许我们应该重新审视面向对象设计,至少不要那么滥用继承。

自从找到了boost::function+boost::bind这对神兵利器,不用再考虑类直接的继承关系,只需要基于对象的设计(object-based),拳拳到肉,程序写起来顿时顺手了很多。

对面向对象设计模式的影响

既然虚函数能用closure代替,那么很多OO设计模式,尤其是行为模式,失去了存在的必要。另外,既然没有继承体系,那么创建型模式似乎也没啥用了。

最明显的是Strategy,不用累赘的Strategy基类和ConcreteStrategyA、ConcreteStrategyB等派生类,一个boost::function<>成员就解决问题。在《设计模式》这本书提到了23个模式,我认为iterator有用(或许再加个State),其他都在摆谱,拉虚架子,没啥用。或许它们解决了面向对象中的常见问题,不过要是我的程序里连面向对象(指继承和多态)都不用,那似乎也不用叨扰面向对象设计模式了。

或许closure-based programming将作为一种新的programming paradiam而流行起来。

依赖注入与单元测试

前面的EchoService可算是依赖注入的例子,EchoService需要一个什么东西来发送消息,它对这个“东西”的要求只是函数原型满足SendMessageCallback,而并不关系数据到底发到网络上还是发到控制台。在正常使用的时候,数据应该发给网络,而在做单元测试的时候,数据应该发给某个DataSink。

安照面向对象的思路,先写一个AbstractDataSink interface,包含sendMessage()这个虚函数,然后派生出两个classes:NetDataSink和MockDataSink,前面那个干活用,后面那个单元测试用。EchoService的构造函数应该以AbstractDataSink*为参数,这样就实现了所谓的接口与实现分离。

我认为这么做纯粹是脱了裤子放屁,直接传入一个SendMessageCallback对象就能解决问题。在单元测试的时候,可以boost::bind()到MockServer上,或某个全局函数上,完全不用继承和虚函数,也不会影响现有的设计。

什么时候使用继承?

如果是指OO中的public继承,即为了接口与实现分离,那么我只会在派生类的数目和功能完全确定的情况下使用。换句话说,不为将来的扩展考虑,这时候面向对象或许是一种不错的描述方法。一旦要考虑扩展,什么办法都没用,还不如把程序写简单点,将来好大改或重写。

如果是功能继承,那么我会考虑继承boost::noncopyable或boost::enable_shared_from_this,下一篇blog会讲到enable_shared_from_this在实现多线程安全的Signal/Slot时的妙用。

例如,IO-Multiplex在不同的操作系统下有不同的推荐实现,最通用的select(),POSIX的poll(),Linux的epoll(),FreeBSD的kqueue等等,数目固定,功能也完全确定,不用考虑扩展。那么设计一个NetLoop base class加若干具体classes就是不错的解决办法。

基于接口的设计

这个问题来自那个经典的讨论:不会飞的企鹅(Penguin)究竟应不应该继承自鸟(Bird),如果Bird定义了virtual function fly()的话。讨论的结果是,把具体的行为提出来,作为interface,比如Flyable(能飞的),Runnable(能跑的),然后让企鹅实现Runnable,麻雀实现Flyable和Runnable。(其实麻雀只能双脚跳,不能跑,这里不作深究。)

进一步的讨论表明,interface的粒度应足够小,或许包含一个method就够了,那么interface实际上退化成了给类型打的标签(tag)。在这种情况下,完全可以使用boost::function来代替,比如:

// 企鹅能游泳,也能跑

class Penguin

{

 public:

  void run();

  void swim();

};

// 麻雀能飞,也能跑

class Sparrow

{

 public:

  void fly();

  void run();

};

// 以 closure 作为接口

typedef boost::function<void()> FlyCallback;

typedef boost::function<void()> RunCallback;

typedef boost::function<void()> SwimCallback;

// 一个既用到run,也用到fly的客户class

class Foo

{

 public:

  Foo(FlyCallback flyCb, RunCallback runCb) : flyCb_(flyCb), runCb_(runCb)

  { }

private:

  FlyCallback flyCb_;

  RunCallback runCb_;

};

// 一个既用到run,也用到swim的客户class

class Bar

{

 public:

  Bar(SwimCallback swimCb, RunCallback runCb) : swimCb_(swimCb), runCb_(runCb)

  { }

private:

  SwimCallback swimCb_;

  RunCallback runCb_;

};

int main()

{

  Sparrow s;

  Penguin p;

  // 装配起来,Foo要麻雀,Bar要企鹅。

  Foo foo(bind(&Sparrow::fly, &s), bind(&Sparrow::run, &s));

  Bar bar(bind(&Penguin::swim, &p), bind(&Penguin::run, &p));

}

实现Signal/Slot

boost::function + boost::bind 描述了一对一的回调,在项目中,我们借助boost::shared_ptr + boost::weak_ptr简洁地实现了多播(multi-cast),即一对多的回调,并且考虑了对象的生命期管理与多线程安全;并且,自然地,对使用者的类型不作任何限制,篇幅略长,留作下一篇blog吧。(boost::signals也实现了Signal/Slot,但可惜不是线程安全的。)

最后,向伟大的C语言致敬!

上一篇:Gradle 1.12 翻译——第九章 Groovy快速入门


下一篇:从零开始学android开发-查看sqlite数据库