[洛谷P3810]【模板】三维偏序(陌上花开)

题目大意:有$n$个元素,第$i$个元素有三个属性$a_i,b_i,c_i$,设$f(i)=\sum\limits_{i\not = j}[a_j\leqslant a_i,b_j\leqslant b_i,c_j\leqslant c_i]$,令$d(i)=\sum\limits_{j=1}^n[f(j)=i]$,求$d$

题解:三位偏序,我用了$CDQ$分治,$a$排序解决,$b$$CDQ$分治,$c$用树状数组

卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 100010
#define maxm 200010
int n, k, tot;
int d[maxn];
struct node {
int a, b, c, cnt, f;
inline bool operator == (const node &rhs) const {
return (a == rhs.a && b == rhs.b && c == rhs.c);
}
} v[maxn], s[maxn];
inline bool cmpb(node lhs, node rhs) {return lhs.b == rhs.b ? lhs.c < rhs.c : lhs.b < rhs.b;}
inline bool cmpa(node lhs, node rhs) {return lhs.a == rhs.a ? cmpb(lhs, rhs) : lhs.a < rhs.a;}
namespace Binary_Indexed_Tree {
int Tr[maxm];
int res;
inline void add(int p, int num) {for (; p <= k; p += p & -p) Tr[p] += num;}
inline int ask(int p) {res = 0; for (; p; p &= p - 1) res += Tr[p]; return res;}
}
using Binary_Indexed_Tree::add;
using Binary_Indexed_Tree::ask;
void CDQ(int l, int r) {
if (l == r) return ;
int mid = l + r >> 1;
CDQ(l, mid); CDQ(mid + 1, r);
std::sort(s + l, s + mid + 1, cmpb);
std::sort(s + mid + 1, s + r + 1, cmpb);
int pl = l, pr = mid + 1;
while (pl <= mid && pr <= r) {
if (s[pl].b <= s[pr].b) add(s[pl].c, s[pl].cnt), pl++;
else s[pr].f += ask(s[pr].c), pr++;
}
while (pr <= r) s[pr].f += ask(s[pr].c), pr++;
for (int i = l; i < pl; i++) add(s[i].c, -s[i].cnt);
}
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d%d%d", &v[i].a, &v[i].b, &v[i].c);
std::sort(v + 1, v + n + 1, cmpa);
for (int i = 1, j; (j = i) <= n; i = j) {
while (j <= n && v[i] == v[j]) j++;
s[++tot] = v[i]; s[tot].cnt = j - i;
}
CDQ(1, tot);
for (int i = 1; i <= tot; i++) d[s[i].f + s[i].cnt] += s[i].cnt;
for (int i = 1; i <= n; i++) printf("%d\n", d[i]);
return 0;
}

  

上一篇:Linux TC基于CBQ队列的流量管理范例


下一篇:Scala中==,eq与equals的区别