Mahout版本:0.7,hadoop版本:1.0.4,jdk:1.7.0_25 64bit。
本篇开始之前先来验证前篇blog的分析结果,编写下面的测试文件来进行对上篇三个job的输出进行读取:
package mahout.fansy.item; import java.io.IOException;
import java.util.Map; import org.apache.hadoop.io.Writable; import mahout.fansy.utils.read.ReadArbiKV;
import junit.framework.TestCase; public class ReadPreparePreferenceMatrixJob extends TestCase { // 测试 ITEMID_INDEX 输出:
public void testITEMID_INDEX() throws IOException{
String path="hdfs://ubuntu:9000/user/mahout/item/temp/preparePreferenceMatrix/itemIDIndex/part-r-00000";
Map<Writable,Writable> map= ReadArbiKV.readFromFile(path);
System.out.println("ITEMID_INDEX=================");
System.out.println(map);
} // 测试 userVectors 输出:
public void testUSER_VECTORS() throws IOException{
String path="hdfs://ubuntu:9000/user/mahout/item/temp/preparePreferenceMatrix/userVectors/part-r-00000";
Map<Writable,Writable> map= ReadArbiKV.readFromFile(path);
System.out.println("USER_VECTORS================");
System.out.println(map);
} // 测试 ratingMatrix 输出:
public void testRATING_MATRIX() throws IOException{
String path="hdfs://ubuntu:9000/user/mahout/item/temp/preparePreferenceMatrix/ratingMatrix/part-r-00000";
Map<Writable,Writable> map= ReadArbiKV.readFromFile(path);
System.out.println("USER_VECTORS================");
System.out.println(map);
}
}
运行的结果如下:
ITEMID_INDEX=================
{102=102, 103=103, 101=101, 106=106, 107=107, 104=104, 105=105}
USER_VECTORS================
{1={103:2.5,102:3.0,101:5.0}, 2={101:2.0,104:2.0,103:5.0,102:2.5}, 3={101:2.5,107:5.0,105:4.5,104:4.0}, 4={101:5.0,106:4.0,104:4.5,103:3.0}, 5={106:4.0,105:3.5,104:4.0,103:2.0,102:3.0,101:4.0}}
RATING_MATRIX================
{102={5:3.0,2:2.5,1:3.0}, 103={5:2.0,4:3.0,2:5.0,1:2.5}, 101={5:4.0,4:5.0,3:2.5,2:2.0,1:5.0}, 106={5:4.0,4:4.0}, 107={3:5.0}, 104={5:4.0,4:4.5,3:4.0,2:2.0}, 105={5:3.5,3:4.5}}
由上面的结果可以看出确实和分析的一样。同时注意到hdfs://ubuntu:9000/user/mahout/item1/temp/preparePreferenceMatrix/numUsers.bin这个文件的大小是0k,同时里面看不到内容,所以对这个文件进行读取,编写下面的测试代码:
package mahout.fansy.item; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.mahout.common.HadoopUtil; import junit.framework.TestCase; public class TestHadoopUtils extends TestCase { // 测试HadoopUtil的writeInt方法
public void testWriteInt() throws IOException{
String path="hdfs://ubuntu:9000/user/mahout/item1/temp/preparePreferenceMatrix/numUsers.bin";
int numberOfUsers=5;
Configuration conf=new Configuration();
conf.set("mapred.job.tracker", "ubuntu:9001");
// HadoopUtil.writeInt(numberOfUsers, new Path(path), conf);
int number=HadoopUtil.readInt(new Path(path), conf);
System.out.println(number);
}
}
测试的结果是:5,这个是因为数据太小,然后HDFS就不显示了?
接着源码进行分析:
numberOfUsers = HadoopUtil.readInt(new Path(prepPath, PreparePreferenceMatrixJob.NUM_USERS), getConf());
源码首先把所有的用户数全部读取出来,然后进行下一个phase。进入下一个phase后,这里首先判断下user是否是-1,那么就是用UserVector的输出记录数作为user的值:
if (numberOfUsers == -1) {
numberOfUsers = (int) HadoopUtil.countRecords(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
PathType.LIST, null, getConf());
}
然后是下一个RowSimilarityJob类了,其作用应该是:calculate the co-occurrence matrix,计算共生矩阵(啥叫共生矩阵?请google。。。我也不知道),其调用代码如下:
ToolRunner.run(getConf(), new RowSimilarityJob(), new String[]{
"--input", new Path(prepPath, PreparePreferenceMatrixJob.RATING_MATRIX).toString(),
"--output", similarityMatrixPath.toString(),
"--numberOfColumns", String.valueOf(numberOfUsers),
"--similarityClassname", similarityClassname,
"--maxSimilaritiesPerRow", String.valueOf(maxSimilaritiesPerItem),
"--excludeSelfSimilarity", String.valueOf(Boolean.TRUE),
"--threshold", String.valueOf(threshold),
"--tempDir", getTempPath().toString()});
}
打开RowSimilarityJob,可以看到这个类同样继承AbstractJob类,那么直接进入run方法吧,可以看到这个方法里面含有三个shouldRunPhase,每个含有一个prepareJob函数,即这个run里面也有三个Job,下面来一个个看。
(1)// weightsPath
Job normsAndTranspose = prepareJob(getInputPath(), weightsPath, VectorNormMapper.class, IntWritable.class,
VectorWritable.class, MergeVectorsReducer.class, IntWritable.class, VectorWritable.class);
输入就是前面的RATING_MATRIX的输出,格式为:<key,value> : itemID-->vector[userID:prefValue,userID:prefVlaue,...];
(1.1)看mapper:
(1.1.1)setup函数,这个函数就是做一些初始化工作,包括vector:norms; nonZeroEntries; maxValues;,以及变量similarity和threshold。
(1.1.2)map函数,这个函数就是对vector和变量做各种操作:
protected void map(IntWritable row, VectorWritable vectorWritable, Context ctx)
throws IOException, InterruptedException { Vector rowVector = similarity.normalize(vectorWritable.get()); int numNonZeroEntries = 0;
double maxValue = Double.MIN_VALUE; Iterator<Vector.Element> nonZeroElements = rowVector.iterateNonZero();
while (nonZeroElements.hasNext()) {
Vector.Element element = nonZeroElements.next();
RandomAccessSparseVector partialColumnVector = new RandomAccessSparseVector(Integer.MAX_VALUE);
partialColumnVector.setQuick(row.get(), element.get());
ctx.write(new IntWritable(element.index()), new VectorWritable(partialColumnVector)); numNonZeroEntries++;
if (maxValue < element.get()) {
maxValue = element.get();
}
} if (threshold != NO_THRESHOLD) {
nonZeroEntries.setQuick(row.get(), numNonZeroEntries);
maxValues.setQuick(row.get(), maxValue);
}
norms.setQuick(row.get(), similarity.norm(rowVector)); ctx.getCounter(Counters.ROWS).increment(1);
}
首先,similarity.normalize()函数其实返回的还是vector本身,并没有做其他操作,因为使用的EuclideanDistanceSimilarity,这个类的normalize函数直接返回;while循环里面含有写入文件的操作,这个写入的格式其实就是<key,value> --> <userID,[itemid:prefValue],同时比较同一个项目的各个用户的评分prefValue,求出最大值放入maxValue中。接下来就是threshold的判断了,由于在实战中是按照默认的值,所以这两个值是相同的,所以if里面的代码就不执行了。设置这个应该是和reducer中的操作相关的;然后就是norms设置了,其中similarity.norm(rowVector)是返回rowVector中项的平方和。最后ROWS计数器自增1。
(1.1.3)cleanup函数,这个主要输出三行即可:
protected void cleanup(Context ctx) throws IOException, InterruptedException {
super.cleanup(ctx);
// dirty trick
ctx.write(new IntWritable(NORM_VECTOR_MARKER), new VectorWritable(norms));
ctx.write(new IntWritable(NUM_NON_ZERO_ENTRIES_VECTOR_MARKER), new VectorWritable(nonZeroEntries));
ctx.write(new IntWritable(MAXVALUE_VECTOR_MARKER), new VectorWritable(maxValues));
}
分别是:
-2147483647 [0x80000001] -->vector( maxValues)
-2147483646 [0x80000002] -->vector( nonzeroEntries)
-2147483648 [0x80000000] -->vector( norms)
由于threshold和NO_THRESHOLD相等,所以if里面的代码没有执行,所以maxValues和nonzeroEntries中的应该是空。
(1.2)看commbiner://MergeVectorsCombiner
(1.2.1)就一个reduce函数:
protected void reduce(IntWritable row, Iterable<VectorWritable> partialVectors, Context ctx)
throws IOException, InterruptedException {
ctx.write(row, new VectorWritable(Vectors.merge(partialVectors)));
}
这个是把相同的key整合,输出为<key,value> --> <userid,vector[itemid:prefValue,itemid:prefValue,...]
(1.3)reducer:
(1.3.1)setup:初始化三个变量的路径:norms; nonZeroEntries; maxValues;
(1.3.2)reduce:
protected void reduce(IntWritable row, Iterable<VectorWritable> partialVectors, Context ctx)
throws IOException, InterruptedException {
Vector partialVector = Vectors.merge(partialVectors); if (row.get() == NORM_VECTOR_MARKER) {
Vectors.write(partialVector, normsPath, ctx.getConfiguration());
} else if (row.get() == MAXVALUE_VECTOR_MARKER) {
Vectors.write(partialVector, maxValuesPath, ctx.getConfiguration());
} else if (row.get() == NUM_NON_ZERO_ENTRIES_VECTOR_MARKER) {
Vectors.write(partialVector, numNonZeroEntriesPath, ctx.getConfiguration(), true);
} else {
ctx.write(row, new VectorWritable(partialVector));
}
}
在reduce中先把还没有整合的vector[itemid:prefValue,itemid:prefValue,...]再整合一下,然后判断key是否是setup中的三个变量,是的话就把value值写入相应的文件,否则则直接输出即可,所以这个job一共产生了四个文件,一个是job的输出,其他三个就是三个变量文件的输出了。
job的输出路径是:weightsPath,格式:<key,value> --> <userid,vector[itemid:prefValue,itemid:prefValue,...]。
(2)//pairwiseSimilarityPath
调用代码:
Job pairwiseSimilarity = prepareJob(weightsPath, pairwiseSimilarityPath, CooccurrencesMapper.class,
IntWritable.class, VectorWritable.class, SimilarityReducer.class, IntWritable.class, VectorWritable.class);
可以看到它的输入就是上一个weightsPath的输出了,格式:<key,value> --> <userid,vector[itemid:prefValue,itemid:prefValue,...];
(2.1)mapper: //CooccurrencesMapper
(2.1.1)setup:初始化变量similarity;numNonZeroEntries;maxValues;threshold;,其中中间两个应该是空,最后一个应该是默认值,第一个是欧氏距离;
(2.1.2)map:
protected void map(IntWritable column, VectorWritable occurrenceVector, Context ctx)
throws IOException, InterruptedException {
Vector.Element[] occurrences = Vectors.toArray(occurrenceVector);
Arrays.sort(occurrences, BY_INDEX); int cooccurrences = 0;
int prunedCooccurrences = 0;
for (int n = 0; n < occurrences.length; n++) {
Vector.Element occurrenceA = occurrences[n];
Vector dots = new RandomAccessSparseVector(Integer.MAX_VALUE);
for (int m = n; m < occurrences.length; m++) {
Vector.Element occurrenceB = occurrences[m];
if (threshold == NO_THRESHOLD || consider(occurrenceA, occurrenceB)) {
dots.setQuick(occurrenceB.index(), similarity.aggregate(occurrenceA.get(), occurrenceB.get()));
cooccurrences++;
} else {
prunedCooccurrences++;
}
}
ctx.write(new IntWritable(occurrenceA.index()), new VectorWritable(dots));
}
ctx.getCounter(Counters.COOCCURRENCES).increment(cooccurrences);
ctx.getCounter(Counters.PRUNED_COOCCURRENCES).increment(prunedCooccurrences);
}
map首先把当前user的所有item以及评分对转换到一个数组中,然后根据item大小对数组进行排序;然后就是两层的for循环了,其中的if里面肯定是要执行dots. 。。。的,因为threshold和NO_THRESHOLD肯定是相等的。然后来说两层for循环是干什么的:针对用户2的所有评分项目排序后为[101:2.0,102:2.5,103:5.0,104:2.0],那么输出就是101-->[102:prefValue101*prefValue102,103:prefValue101*prefValue103,104:prefValue101*prefValue104],然后是102 --> [103:prefValue102*prefValue103,104:prefValue102*prefValue104],。。。以此类推。其中similarity.aggregate返回就是两个参数的乘积。
输出格式为 <key,value> --> <itemid,vector[itemid:pref*,itemid,pref*,...]
(2.2)combiner: //VectorSumReducer
(2.2.1) reduce函数:
protected void reduce(WritableComparable<?> key, Iterable<VectorWritable> values, Context ctx)
throws IOException, InterruptedException {
Vector vector = null;
for (VectorWritable v : values) {
if (vector == null) {
vector = v.get();
} else {
vector.assign(v.get(), Functions.PLUS);
}
}
ctx.write(key, new VectorWritable(vector));
}
这个就是把map的输出整理一下,把相同key的vector中对应的项相加,比如 102 --> [103:1prefValue102*1prefValue103,104:1prefValue102*1prefValue104] ,102 --> [103:prefValue102*prefValue103,104:prefValue102*prefValue104,105:prefValue102*prefValue105],那么整合就是102 --> [103:prefValue102*prefValue103+1prefValue102*1prefValue103,104:prefValue102*prefValue104+1prefValue102*1prefValue104,105:prefValue102*prefValue105]。
(2.3)reducer://SimilarityReducer
(2.3.1)setup:初始化 变量similarity;numberOfColumns;excludeSelfSimilarity;norms;treshold;,其中的numberOfColumns就是numberUsers(实战中是5),而excludeSelfSimilarity在调用的时候被设置为True了。
(2.3.2)reduce:
protected void reduce(IntWritable row, Iterable<VectorWritable> partialDots, Context ctx)
throws IOException, InterruptedException {
Iterator<VectorWritable> partialDotsIterator = partialDots.iterator();
Vector dots = partialDotsIterator.next().get();
while (partialDotsIterator.hasNext()) {
Vector toAdd = partialDotsIterator.next().get();
Iterator<Vector.Element> nonZeroElements = toAdd.iterateNonZero();
while (nonZeroElements.hasNext()) {
Vector.Element nonZeroElement = nonZeroElements.next();
dots.setQuick(nonZeroElement.index(), dots.getQuick(nonZeroElement.index()) + nonZeroElement.get());
}
} Vector similarities = dots.like();
double normA = norms.getQuick(row.get());
Iterator<Vector.Element> dotsWith = dots.iterateNonZero();
while (dotsWith.hasNext()) {
Vector.Element b = dotsWith.next();
double similarityValue = similarity.similarity(b.get(), normA, norms.getQuick(b.index()), numberOfColumns);
if (similarityValue >= treshold) {
similarities.set(b.index(), similarityValue);
}
}
if (excludeSelfSimilarity) {
similarities.setQuick(row.get(), 0);
}
ctx.write(row, new VectorWritable(similarities));
}
首先dots就是获得某个item的第一个combiner的value输出,由于在实战中使用的数据比较少,所以前面只是用了一个reducer,一个combinner,这样在combiner中的value就只有一条记录,所以两层while循环其实是和combiner的功能一样,都是把vector中对应的项加起来;normA就是item的评分的平方和(norms向量可以参考前面);接着的while循环是求item和item的相似度(等下详细讲);然后excludeSelfSimilarity是true(即不对自身计算相似度),所以直接设置自身的相似度为0。比如针对这样的combiner输出<item105,vector[item106:p*105*106,item107:p*105*107]最终的结果输出应该是这样的<item105,vector[item105:0,item106:simi*105*106,item107:simi*105*107]>
总结来说,这个输出路径是:pairwiseSimilarityPath,输出格式是<key,value> --> <itemid,vector[itemid:simi,itemid:simi,...]>
(3)
Job asMatrix = prepareJob(pairwiseSimilarityPath, getOutputPath(), UnsymmetrifyMapper.class,
IntWritable.class, VectorWritable.class, MergeToTopKSimilaritiesReducer.class, IntWritable.class,
VectorWritable.class);
可以看到输入是上面(2)的输出,即pairwiseSimilarityPath,格式是<key,value> --> <itemid,vector[itemid:simi,itemid:simi,...]>,输出是similarityMatrixPath.toString();
(3.1)mapper://UnsymmetrifyMapper
(3.1.1)setup:就设置maxSimilaritiesPerRow变量,这里知道这个参数是在哪里设置了,但是是做什么用的呢?看map函数吧
(3.1.2)map:
protected void map(IntWritable row, VectorWritable similaritiesWritable, Context ctx)
throws IOException, InterruptedException {
Vector similarities = similaritiesWritable.get();
// For performance reasons moved transposedPartial creation out of the while loop and reusing the same vector
Vector transposedPartial = similarities.like();
TopK<Vector.Element> topKQueue = new TopK<Vector.Element>(maxSimilaritiesPerRow, Vectors.BY_VALUE);
Iterator<Vector.Element> nonZeroElements = similarities.iterateNonZero();
while (nonZeroElements.hasNext()) {
Vector.Element nonZeroElement = nonZeroElements.next();
topKQueue.offer(new Vectors.TemporaryElement(nonZeroElement));
transposedPartial.setQuick(row.get(), nonZeroElement.get());
ctx.write(new IntWritable(nonZeroElement.index()), new VectorWritable(transposedPartial));
transposedPartial.setQuick(row.get(), 0.0);
}
Vector topKSimilarities = similarities.like();
for (Vector.Element topKSimilarity : topKQueue.retrieve()) {
topKSimilarities.setQuick(topKSimilarity.index(), topKSimilarity.get());
}
ctx.write(row, new VectorWritable(topKSimilarities));
}
首先看while循环,比如针对这样的输入<item105,vector[item105:0,item106:simi*105*106,item107:simi*105*107]>,ctx.write的内容就是<item106,vector[item105:simi*105*106]>,<item107,vector[item105:simi*105*107]>;后面的for循环和新定义的TopK的作用是把simi*105*106和simi*105*107做比较,然后按照一定的顺序进行排序输出(应该是大的拍前面,比如107的simi比较大,那么输出就应该是<item105,item107:simi*105*107,vector[item105:0,item106:simi*105*106]>);所以这个mapper是有两种类型的输出(这里的类型不是指key、value的类型)。
(3.2)combiner://MergeToTopKSimilaritiesReducer
(3.2.1)setup:和mapper的初始化一样;
(3.2.2)reduce:
protected void reduce(IntWritable row, Iterable<VectorWritable> partials, Context ctx)
throws IOException, InterruptedException {
Vector allSimilarities = Vectors.merge(partials);
Vector topKSimilarities = Vectors.topKElements(maxSimilaritiesPerRow, allSimilarities);
ctx.write(row, new VectorWritable(topKSimilarities));
}
这里的merge又把所有的项目整合了起来,就等于是和输入一样了(这里应该不是,所以这里还应该编写一个follow仿制代码测试一下),然后topKElements就是把所有的排序,然后输出,所以他的输出应该就是和(3.1.2)中说到的for和TopK共同的作用了吧。输出比如107的simi比较大,那么输出就应该是<item105,item107:simi*105*107,vector[item105:0,item106:simi*105*106]>;
(3.3)reducer:// MergeToTopKSimilaritiesReducer,在combiner中提到的reduce中的merge函数如果又把所有的整合一下的话,那么就没有多大的意义了,这里没有多大的意义是指mapper没有做两种类型的输出了,只输出第二种类型即可。这个还有待验证。。。
分享,成长,快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990