spark推测执行的坑

1、spark推测执行开启

设置 spark.speculation=true即可

2、spark开启推测执行的好处

推测执行是指对于一个Stage里面运行慢的Task,会在其他节点的Executor上再次启动这个task,如果其中一个Task实例运行成功则将这个最先完成的Task的计算结果作为最终结果,同时会干掉其他Executor上运行的实例,从而加快运行速度

3、问题

我们的spark任务会将计算结果写入kafka,再有logstash写入es。

最近由于kafka集群写入慢,甚至写不进去,spark任务直接卡住,为防止卡住的情况发生,加了推测执行,但发现跑出来的数据存在重复的情况。同一条数据写了2次,排查发现是由于推测执行的问题,像这种讲执行结果写入kafka的场景,不适用推测执行,因为一个task虽然没有执行完,但是一部分结果已经输出了,启动多个task就会造成数据重复,所以具体的配置还是要看应用的场景来做权衡

上一篇:Project D | Digital life


下一篇:C# MVC 用户登录状态判断 【C#】list 去重(转载) js 日期格式转换(转载) C#日期转换(转载) Nullable日期格式转换 (转载) Asp.Net MVC中Action跳转(转载)