大数据技术

大数据用到的技术主要就是Hadoop、Spark、Storm三大技术阵营及其下属的生态。根据使用的场景不同,和流行趋势来从3大技术阵营中选择,或者配合使用。

大数据技术

图说明:

  1. 蓝色部分,是Hadoop生态系统组件,黄色部分是Spark生态组件,虽然他们是两种不同的大数据处理框架,但它们不是互斥的,Spark与hadoop 中的MapReduce是一种相互共生的关系。Hadoop提供了Spark许多没有的功能,比如分布式文件系统,而Spark 提供了实时内存计算,速度非常快。有一点大家要注意,Spark并不是一定要依附于Hadoop才能生存,除了Hadoop的HDFS,还可以基于其他的云平台,当然啦,大家一致认为Spark与Hadoop配合默契最好摆了。
  2. 技术趋势:Spark在崛起,hadoop和Storm中的一些组件在消退。大家在学习使用相关技术的时候,记得与时俱进掌握好新的趋势、新的替代技术,以保持自己的职业竞争力。

HSQL未来可能会被Spark SQL替代,现在很多企业都是HIVE SQL和Spark SQL两种工具共存,当Spark SQL逐步成熟的时候,就有可能替换HSQL;

MapReduce也有可能被Spark 替换,趋势是这样,但目前Spark还不够成熟稳定,还有比较长的路要走;

Hadoop中的算法库Mahout正被Spark中的算法库MLib所替代,为了不落后,大家注意去学习Mlib算法库;

Storm会被Spark Streaming替换吗?在这里,Storm虽然不是hadoop生态中的一员,但我仍然想把它放在一起做过比较。由于Spark和hadoop天衣无缝的结合,Spark在逐步的走向成熟和稳定,其生态组件也在逐步的完善。

图中技术概要:

Apache Ambari是一种基于Web的工具,支持Apache Hadoop集群的创建、管理和监控。Ambari已支持大多数Hadoop组件,包括HDFS、MapReduce、Hive、Pig、 Hbase、Zookeeper、Sqoop和Hcatalog等;除此之外,Ambari还支持Spark、Storm等计算框架及资源调度平台YARN。

Apache Ambari 从集群节点和服务收集大量信息,并把它们表现为容易使用的,集中化的接口:Ambari Web。

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。HDFS有着高容错性(fault-tolerent)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

MapReduce分布式离线计算框架。

Spark分布式内存计算实时框架。

Tez是Apache最新开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。总结起来,Tez有以下特点:

Apache二级开源项目

运行在YARN之上

适用于DAG(有向图)应用(如Hive,Pig等)。

Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。

Pig是一个基于Hadoop的大规模数据分析平台,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。Pig为复杂的海量数据并行计算提供了一个简单的操作和编程接口。

Impala提供对HDFS、Hbase数据的高性能、低延迟的交互式SQL查询功能。基于Hive使用内存计算,兼顾数据仓库、具有实时、批处理、多并发等优点。

Shark 是一个大型的数据仓库系统为 Spark 的设计与 Apache Hive 兼容。它处理 Hive QL 的性能比 Apache Hive 快 30 倍。支持 Hive 查询语言、元存储、序列化格式和用户自定义函数。

HBase是一个分布式的、面向列的开源数据库。

MLlib是Spark提供的可扩展的机器学习库。MLlib已经集成了大量机器学习的算法。

Mahout提供一些可扩展的机器学习领域经典算法的实现。

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

Oozie基于工作流引擎的开源框架,是用于Hadoop平台的开源的工作流调度引擎,是用来管理Hadoop作业,属于web应用程序。

Storm是一个免费开源、分布式、高容错的实时计算系统。Storm令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求。Storm经常用于在实时分析、在线机器学习、持续计算、分布式远程调用和ETL等领域。

Sqoop是一款开源的ETL工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。

Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

Hue 是运营和开发Hadoop应用的图形化用户界面。Hue程序被整合到一个类似桌面的环境,以web程序的形式发布。图形化可视化的web工具。

Nutch 是一个开源Java实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。

GraphX是Spark用于图形并行计算的新组件。

RHadoop R和Hadoop的接口工具。

Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer。

Spark Streaming 可以实现高吞吐量的、具备容错机制的实时流数据的处理。

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

按功能分类:

文件存储:Hadoop HDFS、Tachyon、KFS

离线计算:Hadoop MapReduce、Spark

流式、实时计算:、Spark Streaming、S4、Heron

K-V、NOSQL数据库:HBase、Redis、MongoDB

资源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQStorm

查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式协调服务:Zookeeper

集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

数据挖掘、机器学习:Mahout、Spark MLLib

数据同步:Sqoop

任务调度:Oozie

Storm与Spark、Hadoop三种框架对比

Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。所以,在不同的应用场景下,应该选择不同的框架。

1.Storm是最佳的流式计算框架,Storm由Java和Clojure写成,Storm的优点是全内存计算,所以它的定位是分布式实时计算系统,按照Storm作者的说法,Storm对于实时计算的意义类似于Hadoop对于批处理的意义。

Storm的适用场景:

1)流数据处理

Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。

2)分布式RPC。由于Storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式RPC框架来使用。

推荐系统(实时推荐,根据下单或加入购物车推荐相关商品)、金融系统、预警系统、网站统计

2.Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析。Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发,类似于Hadoop MapReduce的通用并行计算框架,Spark基于Map Reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点,但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的Map Reduce的算法。

Spark的适用场景:

1)多次操作特定数据集的应用场合

Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小。

2)粗粒度更新状态的应用

由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如Web服务的存储或者是增量的Web爬虫和索引。就是对于那种增量修改的应用模型不适合。

总的来说Spark的适用面比较广泛且比较通用。

3.Hadoop是实现了MapReduce的思想,将数据切片计算来处理大量的离线数据。Hadoop处理的数据必须是已经存放在HDFS上或者类似HBase的数据库中,所以Hadoop实现的时候是通过移动计算到这些存放数据的机器上来提高效率。

Hadoop的适用场景:

1)海量数据的离线分析处理

2)大规模Web信息搜索

3)数据密集型并行计算

 

简单来说:

Hadoop适合于离线的批量数据处理适用于对实时性要求极低的场景

Storm适合于实时流数据处理,实时性方面做得极好

Spark是内存分布式计算框架,试图吞并Hadoop的Map-Reduce批处理框架和Storm的流处理框架,但是Spark已经做得很不错了,批处理方面性能优于Map-Reduce,但是流处理目前还是弱于Storm,产品仍在改进之中。

上一篇:Storm—Storm基础知识


下一篇:大数据平台技术:Storm