In a given grid, each cell can have one of three values:
- the value
0
representing an empty cell; - the value
1
representing a fresh orange; - the value
2
representing a rotten orange.
Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
instead.
Example 1:
Input: [[2,1,1],[1,1,0],[0,1,1]] Output: 4
Example 2:
Input: [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: [[0,2]] Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Note:
1 <= grid.length <= 10
1 <= grid[0].length <= 10
-
grid[i][j]
is only0
,1
, or2
.
BFS
time = O(m * n), space = O(m * n)
class Solution { int[][] dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; public int orangesRotting(int[][] grid) { if(grid == null || grid.length == 0) { return 0; } int freshCount = 0; Queue<int[]> q = new LinkedList<>(); for(int i = 0; i < grid.length; i++) { for(int j = 0; j < grid[0].length; j++) { if(grid[i][j] == 2) { q.offer(new int[] {i, j}); } else if(grid[i][j] == 1) { freshCount++; } } } if(freshCount == 0) { return 0; } int time = 0; while(!q.isEmpty()) { int size = q.size(); for(int i = 0; i < size; i++) { int[] cur = q.poll(); for(int[] dir : dirs) { int x = cur[0] + dir[0]; int y = cur[1] + dir[1]; if(x >= 0 && x < grid.length && y >= 0 && y < grid[0].length && grid[x][y] == 1) { grid[x][y] = 2; q.offer(new int[] {x, y}); freshCount--; } } } time++; } return freshCount == 0 ? time - 1 : -1; } }