Educational Codeforces Round 113 (Rated for Div. 2)
经典卡\(C\)秒\(D\),可惜了
怪自己特判写错了吧,对式子找了半天问题结果根本不是式子的问题
A - Balanced Substring
思路
找到任意一个位置\(i\),满足\(s[i]\neq s[i+1]\),那么直接输出\([i,i+1]\)这个区间作为答案即可
代码
// URL: https://codeforces.com/contest/1569/problem/0
// Problem: A. Balanced Substring
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:35:25
// Author: StelaYuri
//
// Powered by CP Editor (https://cpeditor.org)
#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'\n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}
void solve()
{
int n;
string s;
cin>>n>>s;
repp(i,1,n)
{
if(s[i]!=s[i-1])
{
cout<<i<<' '<<i+1<<'\n';
return;
}
}
cout<<"-1 -1\n";
}
int main()
{
closeSync;
multiCase
{
solve();
}
return 0;
}
B - Chess Tournament
思路
特殊的,如果所有人都只是不想输(全\(1\)),则输出全部平局即可
只有当想赢至少一局的人数(种类\(2\))大于等于\(3\)人时,我们可以让这些人凑成一个有向环,\(a\rightarrow b\)表示\(a\)赢\(b\),这样环内的所有人(种类\(2\)的所有人)就全是只赢\(1\)局输\(1\)局,但也满足条件
对于环外的任意边则全部视作平局即可
代码
// URL: https://codeforces.com/contest/1569/problem/B
// Problem: B. Chess Tournament
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:39:09
// Author: StelaYuri
//
// Powered by CP Editor (https://cpeditor.org)
#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'\n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}
char mp[55][55];
void solve()
{
int n;
string s;
cin>>n>>s;
mst(mp,'.');
rep(i,1,n)
mp[i][i]='X';
vector<int> vec;
repp(i,0,n)
if(s[i]=='2')
vec.pb(i+1);
if(vec.size()==1||vec.size()==2)
{
cout<<"NO\n";
return;
}
rep(i,1,n)
rep(j,1,n)
{
if(i==j)continue;
if(s[i-1]=='1'||s[j-1]=='1')
mp[i][j]='=';
}
if(vec.size()) //环
{
repp(i,1,vec.size()) // i-1 -> i
{
mp[vec[i-1]][vec[i]]='+';
mp[vec[i]][vec[i-1]]='-';
}
mp[vec[vec.size()-1]][vec[0]]='+';
mp[vec[0]][vec[vec.size()-1]]='-';
}
rep(i,1,n)
rep(j,1,n)
if(mp[i][j]=='.')
mp[i][j]='=';
cout<<"YES\n";
rep(i,1,n)
{
rep(j,1,n)
cout<<mp[i][j];
cout<<'\n';
}
}
int main()
{
closeSync;
multiCase
{
solve();
}
return 0;
}
C - Jury Meeting
思路
记最大值为\(a\),次大值为\(b\),最大值的数量为\(cnt1\),次大值的数量为\(cnt2\)
如果最大值的数量\(cnt1\ge 2\),那么任意排列最终都会剩下拥有最大值的这些人在循环讲话,并且同一个人不会连续说两次,故方案数为\(A_n^n\)
否则,拥有最大值\(a\)的只有\(1\)人,最后一次讲话肯定是这个人讲,于是需要保证倒数第二次讲话不是他讲
只有在次大值\(b=a-1\)时,将任意一个拥有次大值的人放在拥有最大值的人后面,才能保证条件满足;否则方案数为\(0\)
因此先将所有拥有次大值的人进行全排列,方案数为\(A_{cnt2}^{cnt2}\)
拥有最大值的人借助隔板法,当隔板插入,发现不能插在最后一个位置,其余\(cnt2\)个位置均能插入,故方案数为\(cnt2\)
剩余的\(n-(cnt2+cnt1)\)个人同样根据隔板法全部插入即可,方案数\(A_n^{n-(cnt2+cnt1)}\)
故最终答案为\(A_{cnt2}^{cnt2}\cdot cnt2\cdot A_n^{n-(cnt2+cnt1)}\)
代码
// URL: https://codeforces.com/contest/1569/problem/C
// Problem: C. Jury Meeting
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:52:38
// Author: StelaYuri
//
// Powered by CP Editor (https://cpeditor.org)
#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'\n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}
const int N=4e5;
ll fac[N+1],inv[N+1];
void init()
{
fac[0]=1;
for(int i=1;i<=N;i++)
fac[i]=fac[i-1]*i%mod;
inv[N]=qpow(fac[N],mod-2);
for(int i=N-1;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
}
ll getC(ll m,ll n)
{
return fac[m]*inv[m-n]%mod*inv[n]%mod;
}
ll getA(ll m,ll n)
{
return fac[m]*inv[m-n]%mod;
}
int n,a[200050];
void solve()
{
cin>>n;
rep(i,1,n)
cin>>a[i];
sort(a+1,a+n+1);
int p=n;
while(p>1&&a[p]==a[p-1])
p--;
int cnt1=n-p+1; //最大值的数量
if(cnt1>1)
{
cout<<getA(n,n)<<'\n';
return;
}
if(a[p-1]+1<a[p])
{
cout<<0<<'\n';
return;
}
p--;
while(p>1&&a[p]==a[p-1])
p--;
int cnt2=n-cnt1-p+1; //次大值的数量
cout<<getA(cnt2,cnt2)*cnt2%mod*getA(n,n-(cnt2+1))%mod<<'\n';
}
int main()
{
closeSync;
init();
multiCase
{
solve();
}
return 0;
}
D - Inconvenient Pairs
思路
根据题意,所有点都肯定落在某条横纵线上或是横纵线交点上
因此如果某个点恰好落在给定的横纵线的某个交点上,那么这个点与其余任意点之间的最短距离一定等于其曼哈顿距离,对答案无贡献
否则,假如某个点\(P\)落在某条横线上,并夹在第\(i\)条和第\(i+1\)条纵线之间
明显可以得出,所有夹在第\(i\)条和第\(i+1\)条纵线之间并且与点\(P\)不是同一条横线上的点都可以计入答案
于是我们借助\(4\)个map容器,两个map记录第\(i\)条与第\(i+1\)条横线之间、第\(i\)条与第\(i+1\)条纵线之间分别有多少点,另外两个map记录在第\(i\)条与第\(i+1\)条横线之间并且在第\(j\)条纵线上、在第\(i\)条与第\(i+1\)条纵线之间并且在第\(j\)条横线上的点分别有多少
那么对于点\(P\)夹在哪两条线之间,通过二分即可求出
统计答案时拿对应的两个容器相减即为答案,然后更新对应的两个容器即可
代码
// URL: https://codeforces.com/contest/1569/problem/D
// Problem: D. Inconvenient Pairs
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 23:52:41
// Author: StelaYuri
//
// Powered by CP Editor (https://cpeditor.org)
#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'\n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}
int x[200050],y[200050];
void solve()
{
int n,m,k;
cin>>n>>m>>k;
rep(i,1,n)
cin>>x[i];
rep(i,1,m)
cin>>y[i];
x[n+1]=INF;
y[m+1]=INF; //二分边界
map<int,int> mpx,mpy;
map<P,int> mpxy,mpyx;
ll ans=0;
rep(i,1,k)
{
int xx,yy;
cin>>xx>>yy;
int px=lower_bound(x+1,x+n+1,xx)-x;
int py=lower_bound(y+1,y+m+1,yy)-y;
if(x[px]==xx&&y[py]==yy)
continue; //线的交点,无贡献
if(x[px]==xx) //落在某横线上
{
ans+=mpy[py]-mpxy[P(px,py)]; // py-1 ~ py 两线之间所有点,减去两线之间且在px横线上的点的数量,即为答案
mpy[py]++;
mpxy[P(px,py)]++;
}
else //落在某纵线上
{
ans+=mpx[px]-mpyx[P(py,px)];
mpx[px]++;
mpyx[P(py,px)]++;
}
}
cout<<ans<<'\n';
}
int main()
{
closeSync;
multiCase
{
solve();
}
return 0;
}
https://blog.csdn.net/qq_36394234/article/details/120192261