Candies POJ - 3159
题意:
给N个小朋友分糖, 给出M组约束a, b, c表示b的糖果不能比a多c个以上, 求1号和N号的最大糖果差异数
题解:
非常显然的线性查分约束问题
对于a, b, c表示b的糖果不能比a多c个以上 , 即cnt[a]+c >= cnt[b], 可以理解为a指向b的一条权值为c的单向边.
这样一来整个系统也就转换成了图, 而对于求1和N的最大差异数, 即cnt[N]-cnt[1] 的最大值, 即1到N的最短路
求最短路时可用堆优化Dijkstra和栈优化SPFA两种
经验小结:
搞清楚差分约束的是最短路还是最长路
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <stdlib.h>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(a));
typedef long long ll;
const int inf = 1 << 30;
const ll maxn = 300010;
int n, m, edgeCnt = 0, head[maxn];
struct node {
int to, w, next;
node(int tt, int ww, int nn) { to = tt, w = ww, next = nn; }
node() {}
}es[maxn];
int d[maxn];
bool book[maxn];
void add(int u, int v, int w) {
es[edgeCnt] = { v,w,head[u] };
head[u] = edgeCnt++;
}
void spfa(int s) {
stack<int>st;
fill(d, d + maxn, inf);
d[1] = 0, book[1] = true;
st.push(1);
while (!st.empty()) {
int u = st.top();
st.pop();
book[u] = false;
for (int i = head[u]; i != -1; i = es[i].next) {
int v = es[i].to, w = es[i].w;
if (d[u] + w < d[v]) {
d[v] = d[u] + w;
if (!book[v]) {
st.push(v);
book[v] = true;
}
}
}
}
}
int main() {
ms(head, -1);
cin >> n >> m;
while (m--) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
spfa(1);
cout << d[n] << endl;
return 0;
}