这个迷宫问题还是挺好玩的,多加了一个转向的问题,有些路口不同的进入方式会有不同的转向限制,这个会比较麻烦一点,所以定义结点结构体的时候需要加一个朝向dir。总体来说是一道BFS求最短路的问题。最后打印最短路的时候递归可能会导致函数栈溢出,改用循环,用vector保存路径。
AC代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cctype> #include <cstring> #include <string> #include <sstream> #include <vector> #include <set> #include <map> #include <algorithm> #include <stack> #include <queue> using namespace std; const int maxn = 10; struct Node { int r, c, dir; // 走到(r,c)时的朝向dir,N~0,E~1,S~2,W~3 Node(int r = 0, int c = 0, int dir = 0) :r(r), c(c), dir(dir) {} }; const char* dirs = "NESW"; // 顺时针 const char* turns = "FLR"; int dirID(char c) { return strchr(dirs, c) - dirs; } // 把方向字符转化为0~3,分别对应NESW int turnID(char c) { return strchr(turns, c) - turns; } // 把转向字符转化为0~2,分别对应FLR int hasEdge[maxn][maxn][4][3]; // 表示当前状态是(r,c,dir)是否可以沿着转向turn行走 int d[maxn][maxn][4]; Node p[maxn][maxn][4]; int r0, c0, dir, r1, c1, r2, c2; const int dr[] = { -1, 0, 1, 0 }; const int dc[] = { 0, 1, 0, -1 }; Node walk(const Node& u, int turn) { int dir = u.dir; if (turn == 1) { dir = (dir + 3) % 4; // 逆时针左转 } else if (turn == 2) { dir = (dir + 1) % 4; // 顺时针右转 } return Node(u.r + dr[dir], u.c + dc[dir], dir); } bool inside(int r, int c) { // 是否出界 return r >= 1 && r <= 9 && c >= 1 && c <= 9; } bool readCase() // 读取数据 { char s[99], s2[99]; scanf("%s", s); char errs[99] = "END"; if (strlen(s) == 3 && s[0] == 'E' && s[1] == 'N' && s[2] == 'D') { return false; } scanf("%d%d%s%d%d", &r0, &c0, s2, &r2, &c2); printf("%s\n", s); dir = dirID(s2[0]); r1 = r0 + dr[dir]; c1 = c0 + dc[dir]; memset(hasEdge, 0, sizeof(hasEdge)); while (1) { int r, c; scanf("%d", &r); if (r == 0) { break; } scanf("%d", &c); while (scanf("%s", s) == 1 && s[0] != '*') { for (int i = 1; i < strlen(s); i++) { hasEdge[r][c][dirID(s[0])][turnID(s[i])] = 1; } } } return true; } void printAns(Node u) // 打印最短路 { vector<Node> nodes; while (1) { nodes.push_back(u); if (d[u.r][u.c][u.dir] == 0) { break; } u = p[u.r][u.c][u.dir]; } nodes.push_back(Node(r0, c0, dir)); int cnt = 0; for (int i = nodes.size() - 1; i >= 0; i--) { if (cnt % 10 == 0) { printf(" "); } printf(" (%d,%d)", nodes[i].r, nodes[i].c); if (++cnt % 10 == 0) { printf("\n"); } } if (nodes.size() % 10 != 0) { printf("\n"); } } void solve() { queue<Node> q; memset(d, -1, sizeof(d)); Node u(r1, c1, dir); d[u.r][u.c][u.dir] = 0; q.push(u); while (!q.empty()) { Node u = q.front(); q.pop(); if (u.r == r2 && u.c == c2) { // 终点 printAns(u); return; } for (int i = 0; i < 3; i++) { Node v = walk(u, i); if (hasEdge[u.r][u.c][u.dir][i] && inside(v.r, v.c) && d[v.r][v.c][v.dir] < 0) { d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + 1; p[v.r][v.c][v.dir] = u; q.push(v); } } } printf(" No Solution Possible\n"); } int main() { while (readCase()) { solve(); } return 0; }