Rikka with Parenthesis II
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5831
Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:
Correct parentheses sequences can be defined recursively as follows:
1.The empty string "" is a correct sequence.
2.If "X" and "Y" are correct sequences, then "XY" (the concatenation of X and Y) is a correct sequence.
3.If "X" is a correct sequence, then "(X)" is a correct sequence.
Each correct parentheses sequence can be derived using the above rules.
Examples of correct parentheses sequences include "", "()", "()()()", "(()())", and "(((())))".
Now Yuta has a parentheses sequence $S$, and he wants Rikka to choose two different position $i,j$ and swap $S_i,S_j$.
Rikka likes correct parentheses sequence. So she wants to know if she can change S to a correct parentheses sequence after this operation.
It is too difficult for Rikka. Can you help her?
Input
The first line contains a number t(1100
For each testcase, the first line contains an integers n(1
Output
For each testcase, print "Yes" or "No" in a line.
Sample Input
3
4
())(
4
()()
6
)))(((
Sample Output
Yes
Yes
No
Hint
For the second sample input, Rikka can choose (1,3) or (2,4) to swap. But do nothing is not allowed.
Source
2016 Multi-University Training Contest 8
##题意:
括号匹配问题:空、XY、(X) 为合法字串.
给出一个字串,是否可以经过且只经过一次交换操作,使得结果串合法.
(不能不交换,不能与自己位置交换)
##题解:
考虑交换操作:(必须换且只能换一次).
①. 如果原串本身就合法,长度为2时:"()"->"No", ")("->"Yes".
长度大于2时一定为"Yes", 因为可以直接交换两个相同的括号.
②. 如果原串非法,那么交换时一定交换的不同的符号(否则没用).
那么符合条件的串一定是把一个 '(' -> ')' 且一个 ')' -> '(' . 那么只考虑变换即可.
考虑如何判断一个串是否合法的过程:
依次处理字符,若是'('则入栈,若是')'则从栈中弹出一个'('. 若没有'('则不合法.
那么此题就是上述过程的变种,在处理过程中允许两次变换. 由于'('->')'的时机不方便考虑, 这里就只考虑')'->'('.
①. 如果当前是'(',直接入栈.
②. 如果当前是')',如果栈非空,则弹出一个'('; 如果栈空就把当前的')'变成'('入栈. (标记最多只能变化一次).
用flag标记是否有将')'变为'('的操作. 结果栈要么为空,要么全是'('.
1. 如果整个字串没有被处理完,那么肯定是"No".
2. 如果flag=0, 那么要求没有'('剩下.
3. 如果flag=1, 那么结果栈中的'('只能是两个. "((" -> "()".
官方题解:
最优情况下一定交换第一个右括号和最后一个左括号,交换后判断一下即可。 时间复杂度 O(n).
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 101000
#define mod 100000007
#define inf 0x3f3f3f3f
#define mid(a,b) ((a+b)>>1)
#define IN freopen("in.txt","r",stdin);
using namespace std;
char str[maxn];
stack s;
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t;
while(t--)
{
int n; scanf("%d", &n);
while(!s.empty()) s.pop();
scanf("%s", str);
if(n == 2) {
if(str[0]=='(' && str[1]==')') {
puts("No");
continue;
}
}
int i;
int flag1 = 0;
for(i=0; i<n; i++) {
if(str[i] == '(') {
s.push('(');
} else {
if(!s.empty()) s.pop();
else {
if(flag1) break;
flag1 = 1;
s.push('(');
}
}
}
if(i == n) {
if(!flag1) {
if(s.empty()) puts("Yes");
else puts("No");
}
else {
if(s.size() != 2) puts("No");
else puts("Yes");
}
}
else puts("No");
}
return 0;
}