Solr4.8.0源码分析(12)之Lucene的索引文件(5)

Solr4.8.0源码分析(12)之Lucene的索引文件(5)

1. 存储域数据文件(.fdt和.fdx)

Solr4.8.0里面使用的fdt和fdx的格式是lucene4.1的。为了提升压缩比,StoredFieldsFormat以16KB为单位对文档进行压缩,使用的压缩算法是LZ4,由于它更着眼于速度而不是压缩比,所以它能快速压缩以及解压。

1.1 存储域数据文件(.fdt)

Solr4.8.0源码分析(12)之Lucene的索引文件(5)

  • 真正保存存储域(stored field)信息的是fdt文件,该文件存放了压缩后的文档,按16kb或者更大的模块大小为单位进行压缩。当要写入segment时候,文档会先被存储在内存的buffer里面,当buffer大小大于16kb或者更大时候,这些文档就会被刷入磁盘以LZ4格式压缩存放。
  • fdt文件主要由三部分组成,Header信息,PacjedIntsVersion信息,以及多个块chunk。
  • fdt是以chunk为单位进行压缩以及解压缩的,一个chunk块内含有一个或者多个document
  • chunk内含有第一个document的编号即DocBase,块内document的个数即ChunkDocs,每一个Document的存储的Field的个数即DocFieldCounts,所有在块内的document的长度即DocLengths,以及多个压缩的document。
  • CompressedDoc由FieldNumAndType和Value组成。FieldNumAndType是一个Vlong型,它的最低三位表示Type,其他位数表示FieldNum即域号。
  • Value对应Type,
    • 0: Value is String
    • 1: Value is BinaryValue
    • 2: Value is Int
    • 3: Value is Float
    • 4: Value is Long
    • 5: Value is Double
    • 6, 7: unused
  • 如果文档大于16KB,那么chunk只会存在一个文档。因为一个文档的所有域必须全部在同一chunk种
  • 如果在chunk块中多个文档较大且使得chunk大于32kb时,那么chunk会被压缩成多个16KB大小的LZ4块。
  • 该结构不支持大于(231 - 214) bytes的单个文档

StoredFieldsFormat继承了CompressingStoredFieldsFormat,所以先通过学习CompressingStoredFieldsReader来Solr是怎么解析.fdx和.fdt的

 public CompressingStoredFieldsReader(Directory d, SegmentInfo si, String segmentSuffix, FieldInfos fn,
IOContext context, String formatName, CompressionMode compressionMode) throws IOException {
this.compressionMode = compressionMode;
final String segment = si.name;
boolean success = false;
fieldInfos = fn;
numDocs = si.getDocCount();
ChecksumIndexInput indexStream = null;
try {
//打开.fdx名字
final String indexStreamFN = IndexFileNames.segmentFileName(segment, segmentSuffix, FIELDS_INDEX_EXTENSION);
//打开.fdt名字
final String fieldsStreamFN = IndexFileNames.segmentFileName(segment, segmentSuffix, FIELDS_EXTENSION);
// Load the index into memory
//解析.fdx文件
indexStream = d.openChecksumInput(indexStreamFN, context);
//获取header
final String codecNameIdx = formatName + CODEC_SFX_IDX;
version = CodecUtil.checkHeader(indexStream, codecNameIdx, VERSION_START, VERSION_CURRENT);
assert CodecUtil.headerLength(codecNameIdx) == indexStream.getFilePointer();
//开始解析blocks
indexReader = new CompressingStoredFieldsIndexReader(indexStream, si); long maxPointer = -1; if (version >= VERSION_CHECKSUM) {
maxPointer = indexStream.readVLong();
CodecUtil.checkFooter(indexStream);
} else {
CodecUtil.checkEOF(indexStream);
}
indexStream.close();
indexStream = null; // Open the data file and read metadata
//解析.fdt文件
fieldsStream = d.openInput(fieldsStreamFN, context);
if (version >= VERSION_CHECKSUM) {
if (maxPointer + CodecUtil.footerLength() != fieldsStream.length()) {
throw new CorruptIndexException("Invalid fieldsStream maxPointer (file truncated?): maxPointer=" + maxPointer + ", length=" + fieldsStream.length());
}
} else {
maxPointer = fieldsStream.length();
}
this.maxPointer = maxPointer;
final String codecNameDat = formatName + CODEC_SFX_DAT;
final int fieldsVersion = CodecUtil.checkHeader(fieldsStream, codecNameDat, VERSION_START, VERSION_CURRENT);
if (version != fieldsVersion) {
throw new CorruptIndexException("Version mismatch between stored fields index and data: " + version + " != " + fieldsVersion);
}
assert CodecUtil.headerLength(codecNameDat) == fieldsStream.getFilePointer(); if (version >= VERSION_BIG_CHUNKS) {
chunkSize = fieldsStream.readVInt();
} else {
chunkSize = -1;
}
packedIntsVersion = fieldsStream.readVInt();
//开始解析chunks
decompressor = compressionMode.newDecompressor();
this.bytes = new BytesRef(); success = true;
} finally {
if (!success) {
IOUtils.closeWhileHandlingException(this, indexStream);
}
}
}

1.2 存储域索引文件(.fdx)

Solr4.8.0源码分析(12)之Lucene的索引文件(5)

  • BlockEndMarker:该值为0,表示后面没有接着Block。因为Block不是以0开始的
  • 这里的一个Block包含了多个chunk,chunk对应了.fdt的chunk。所以可以通过.fdx快速的定位到.fdt的chunk。
  • Block有三部分组成,BlockChunks表示该block内含有的chunk的数量,DocBases表示了该block的第一个document的ID并可以通过它获取任意一个该block内的chunk的docbase,同理StartPointer表示了该block内所有的chunk在.fdt文件里的位置信息。
  • DocBases由DocBase, AvgChunkDocs, BitsPerDocBaseDelta, DocBaseDeltas组成。DocBase是Block内的第一个document ID,AvgChunkDocs是Chunk内document平均个数,BitsPerDocBaseDelta是与AvgChunkDocs的差值,DocBaseDeltas是BlockChunks大小的数组,表示平均的doc base的差值。
  • StartPointers由StartPointerBase(block的第一个指针,它对应DocBase),AvgChunkSize(chunk的平均大小,对应AvgChunkDocs), BitPerStartPointerDelta以及StartPointerDeltas组成
  • 第N个chunk的起始docbase可以用如下公式计算:DocBase + AvgChunkDocs * n + DocBaseDeltas[n]
  • 第N个chunk的起始point可以用如下公式计算:StartPointerBase + AvgChunkSize * n + StartPointerDeltas[n]
  • .fdx文件的解析主要用到了 CompressingStoredFieldsFormat,其中以CompressingStoredFieldsIndexReader为例,查看如何读取.fdx文件:
 // It is the responsibility of the caller to close fieldsIndexIn after this constructor
// has been called
CompressingStoredFieldsIndexReader(IndexInput fieldsIndexIn, SegmentInfo si) throws IOException {
maxDoc = si.getDocCount();
int[] docBases = new int[16];
long[] startPointers = new long[16];
int[] avgChunkDocs = new int[16];
long[] avgChunkSizes = new long[16];
PackedInts.Reader[] docBasesDeltas = new PackedInts.Reader[16];
PackedInts.Reader[] startPointersDeltas = new PackedInts.Reader[16];
//读取packedIntsVersion
final int packedIntsVersion = fieldsIndexIn.readVInt(); int blockCount = 0;
//开始遍历并读取所有block
for (;;) {
//numChunks即当做BlockChunks,表示一个Block内Chunks的个数;当Block读取完时候会读取一个为0的值即为BlocksEndMarker,
//表示已读取完所有 block。
final int numChunks = fieldsIndexIn.readVInt();
if (numChunks == 0) {
break;
}
//初始化时候,定义大小为16的数组docBases,startPointers,avgChunkDocs,avgChunkSizes表示16个模块。
//当Block大于16时候,会生成新的大小的数组,并将原数据复制过去。
if (blockCount == docBases.length) {
final int newSize = ArrayUtil.oversize(blockCount + 1, 8);
docBases = Arrays.copyOf(docBases, newSize);
startPointers = Arrays.copyOf(startPointers, newSize);
avgChunkDocs = Arrays.copyOf(avgChunkDocs, newSize);
avgChunkSizes = Arrays.copyOf(avgChunkSizes, newSize);
docBasesDeltas = Arrays.copyOf(docBasesDeltas, newSize);
startPointersDeltas = Arrays.copyOf(startPointersDeltas, newSize);
} // doc bases
//读取block的docBase
docBases[blockCount] = fieldsIndexIn.readVInt();
//读取avgChunkDocs,block中chunk内含有平均的document个数
avgChunkDocs[blockCount] = fieldsIndexIn.readVInt();
//读取bitsPerDocBase,block中与avgChunkDocs的delta的位数,根据这个位数获取docBasesDeltas数组内具体delta
final int bitsPerDocBase = fieldsIndexIn.readVInt();
if (bitsPerDocBase > 32) {
throw new CorruptIndexException("Corrupted bitsPerDocBase (resource=" + fieldsIndexIn + ")");
}
//获取docBasesDeltas值,docBasesDeltas是一个numChunks大小的数组,存放每一个chunk起始的docbase与avgChunkDocs的差值
docBasesDeltas[blockCount] = PackedInts.getReaderNoHeader(fieldsIndexIn, PackedInts.Format.PACKED, packedIntsVersion, numChunks, bitsPerDocBase); // start pointers
//读取block的startPointers
startPointers[blockCount] = fieldsIndexIn.readVLong();
//读取startPointers,chunk的平均大小
avgChunkSizes[blockCount] = fieldsIndexIn.readVLong();
//读取bitsPerStartPointer,block中与avgChunkSizes的delta的位数,根据这个位数获取startPointersDeltas数组内具体delta
final int bitsPerStartPointer = fieldsIndexIn.readVInt();
if (bitsPerStartPointer > 64) {
throw new CorruptIndexException("Corrupted bitsPerStartPointer (resource=" + fieldsIndexIn + ")");
}
//获取startPointersDeltas值,startPointersDeltas是一个numChunks大小的数组,
//存放每一个chunk起始的startPointer与avgChunkSizes的差值。
startPointersDeltas[blockCount] = PackedInts.getReaderNoHeader(fieldsIndexIn, PackedInts.Format.PACKED, packedIntsVersion, numChunks, bitsPerStartPointer); //下一个block
++blockCount;
}
//将遍历完的数据放入全局变量中
this.docBases = Arrays.copyOf(docBases, blockCount);
this.startPointers = Arrays.copyOf(startPointers, blockCount);
this.avgChunkDocs = Arrays.copyOf(avgChunkDocs, blockCount);
this.avgChunkSizes = Arrays.copyOf(avgChunkSizes, blockCount);
this.docBasesDeltas = Arrays.copyOf(docBasesDeltas, blockCount);
this.startPointersDeltas = Arrays.copyOf(startPointersDeltas, blockCount);
}
上一篇:创建dblink 同义词


下一篇:jenkins和docker 在docker里运行jenkins